Cyber Resiliency in Naval Engineering Systems GOAL: Maintain the operability of U.S. Coast Guard ships during cyber attacks

1. Cyber Resiliency is a Key **Component of Cybersecurity**

Cyber resilience acknowledges that risk can not be mitigated to reduce vulnerabilities to 0 and therefore needed to maintain the ability to perform

Risk Mitigation + Resiliency = System Performance

Therefore...

Cyber security + cyber resiliency = Cyber-Physical System Performance

Equation 1:

2. Hypothesis: Cyber Resiliency Will **Reduce Ship Downtime**

Naval System Cyber Resiliency: Maximizing a ship's engineering system performance during a cyber incident to ensure the minimum operating level of a vessel is maintained.

Hypothesis: Cyber resilience can be identified for Naval Engineering Systems as a parallel to cyber security to reduce potential physical system downtime caused by a cyber incident.

"Information System Resilience: The ability of an information system to continue to operate while under attack, even if in a degraded or debilitated state, and to rapidly recover operational capabilities for essential functions after a successful attack." (NIST pub.800-30)

For more information: contact: Ryan Montvydas rmonty@mit.edu

Ryan Montvydas & Dr. Keri Pearlson

- - 1) Define system

 - 3) Identify cyber-resiliency gaps

4. Apply a Holistic System Model to **Test Cyber Resiliency**

Through modeling a system's control structure, cyberresiliency gaps can be identified. Necessary cyberresilience requirements based on the control structure can then be created. See Figure 1 for control structure

Figure 1: System Boundaries (dashed lines) & Interactions (Red line indicates control & feedback; Blue line indicates information transmission)

3. Steps to Resolve Cyber Resiliency

1) Discuss system needs with stakeholders 2) Define cybersecurity vs. cyber resiliency 3) Conduct System Theoretic Process Analysis (STPA) 2) Model control structure (Fig. 1)

4) Create cyber-resiliency requirements

4) Generate scenario-based recommendations

2)

Implementing Cyber Resiliency Practices with Cybersecurity

1) Cybersecurity & cyber resiliency are crucial to a system's 'uptime'; it's not an either-or choice.

> 1.1) Cyber resiliency is tested when a cyber-attack occurs. Cybersecurity is tested when cyber-attacks don't occur.

Managers should select and prioritize key functions that must have cyber-resiliency for their system to deliver its intended value. Then create testable scenarios of detection, response, and recovery.

Resilience is not enough to respond to a cyber attack. Cyber attacks could disrupt multiple systems simultaneously and degrade organizational performance. Cyber resilience is required of all socio-technical systems within an organization.