
Cyber Physical IoT Device Management Using a
Lightweight Agent

Matthew Maloney∗, Elizabeth Reilly∗, Michael Siegel∗, Gregory Falco∗
∗Massachusetts Institute of Technology

{maloneym, reillye, msiegel, gfalco}@mit.edu

Abstract—Increasingly IoT-enabled infrastructure such as
smart cities, energy delivery systems, communication networks,
manufacturing plants and transportation systems are unable to
manage devices with various makes, models, configurations and
applications. Considering the fragility of these industrial IoT
devices and their cyber-physical nature, it is important not to
impede on their limited memory and processing power. Existing
solutions for IoT device management such as IoT platforms and
hardware solutions have considerable downsides. We propose
an agent-based mechanism to control and manage diverse IoT
devices that has limited impact on device operations. Our agent is
tested in the context of delivering security updates to IoT devices
and demonstrates the efficiency of the agent-based management
architecture.

I. INTRODUCTION

The digitization of critical infrastructure (e.g., smart cities,
energy delivery systems) uses cyber-physical internet of things
(IoT) devices to manage and control environments. Cyber-
physical systems are digital devices that have physical con-
sequences if compromised. Some examples of such infras-
tructure includes energy delivery systems, water networks and
transportation systems. In these environments, IoT devices
are used for a wide variety of applications and distributed
across concentrated geographical areas. They are produced
by a heterogeneous pool of manufacturers, have different
operating systems and configurations. These features of IoT
present device management challenges for urban infrastructure
operators.

IoT device platforms have been heavily marketed by sys-
tem integrators as the solution for IoT device management.
Unfortunately, these platforms tend to be computationally
expensive and memory heavy. Also, platforms are generally
intended to cultivate an ecosystem of preferred providers
for the IoT devices, which locks the operators into certain
platform ”partner” original equipment manufacturers (OEMs).
The partner OEMs that are part of the platform’s ecosystem are
not always best-in-class for the intended smart city application
or for device security. Should an operating agency want to
integrate an IoT device that is outside of the preferred partner
ecosystem, additional integration costs are required because a
new API will be needed for the device to integrate with the
platform. IoT platforms are generally integrated into a prede-
termined cloud provider, which further limits the flexibility of
an operator hoping to manage their IoT assets.

Core functionality for cyber-physical IoT device manage-
ment revolves around device security and associated updates.

Considering the relative fragility of IoT devices, updates must
be delivered in a lightweight way that does not interfere
with existing processes or potentially brick the device. While
pushing over-the-air firmware updates is always an option
for device management, it generally requires a system restart
which may pose issues for some devices if a malfunction
occurs in the process. This is especially important for cyber-
physical systems. In 2018, hundreds of traffic lights across
NYC went out because of a failed software update [10]. While
no injuries were reported, one could imagine vehicle accidents
as a result of the disturbance if not managed properly.

We propose a lightweight mechanism to perform security
and other device management updates via a golang-based
agent. Our agent effectively delivers highly targeted updates
to an IoT device’s operating system that does not require a
system restart to take effect. This reduces the risk for bricking
a device or interfering with constantly running processes on
devices expected to operate 24/7. Such an operating capacity
service level is typical for cyber-physical devices for urban
critical infrastructure like an energy delivery system. The agent
is capable of providing concurrent process execution, similarly
to an IoT platform, with the added benefit of being lightweight
and not locking smart cities into a designated ecosystem
of devices. Specifically, our agent focuses on securing IoT
devices, which is of utmost importance for cyber-physical
systems. Many IoT device security solutions are in use today
and have been proposed, however they fall short for a variety
of reasons outlined below. Our agent aims to systematically
address these failures while offering benefits beyond security
such as device management for cyber-physical environments.

II. RELATED WORKS

IoT device security and management is a persistent issue
demonstrated by the many attacks against such systems [16].
Due to the heterogeneity of IoT devices, there are limited
mechanisms available to manage a device and its security in a
uniform capacity. This has led to a broad range of conceptual
and functional solutions that often have niche applicability to
certain IoT devices, but are not ubiquitously relevant across
the families of IoT. Here we review the merits and challenges
with some of the most promising IoT security management
techniques.



A. Software/Hardware Hybrid Agent

One approach to IoT device management for security is
using the combination of hardware and software to decrease
security concerns by increasing the credibility of device data
collection [25]. The authors have suggested developing a
’Trustworthy Agent Execution Chip’ that would be installed on
all devices and would provide a trusted hardware environment
on which the software agent can run. The agent is defined
as an autonomous piece of software running on the device
that could manage resources and regulate actions in order
to maximize benefits of the whole IoT system. However, a
chip solution requires installation and restart which disrupts
the routine behavior of IoT devices. This can be a barrier for
manufacturers and can limit the flexibility of cyber-physical
system device management.

B. Software Defined Networking/ IoT-IDM

Another mechanism developed for cyber-physical security
management is a host based framework for intrusion detection
and mitigation that uses popular SDN tools [19]. The authors
decided to develop the framework to work within smart
home environments at a network level. This decision was to
avoid developing embedded software agents for the myriad
of devices that may be found within a smart home. This
framework addresses network based attacks by managing an
inventory of network devices and analyzing traffic. A custom
java based module was written to interact with the open
SDN controller OpenFlow [2]. This module is responsible for
signalling the controller when a network change is needed,
either allowing or denying traffic to reach its destination
based on the framework detection unit. However, this solution
monitors the network as a whole and cannot be simplified
for use by specific devices. This again limits the flexibility of
cyber-physical device management.

C. Whitelisting in SCADA Sensor Networks

IoT technologies have begun to merge with SCADA net-
works to more efficiently gather and analyze real time data.
This convergence requires an increased level of security man-
agement for SCADA devices to avoid compromise. To address
this issue, an approach to whitelisting network activity on
SCADA networks was developed [14]. The IndusCAP-Gte
system works by analyzing a period of regular network traffic
on a SCADA network. This traffic is used to build a model
for determining abnormal network flows. The analysis phase
outputs a set of network rules or whitelists for traffic that
is allowed to occur on the network. Enforcement requires
the system to be positioned inline between SCADA and field
networks and acts upon packets it observes. This solution locks
devices into a specific ecosystem in that they must remain
inline between SCADA and these field networks. A barrier
to such a technique is that existing IoT devices are required
to be reconfigured to support this solution. Considering many
SCADA systems are legacy devices, this reconfiguration is not
necessarily operationaly feasible.

D. Application Whitelisting

Many IoT devices are susceptible to a wide range of attacks
and malware [15]. Considering compute power and memory
constraints of IoT, traditional anti-virus software applications
are not be suitable. Traditional signature anti-virus software
also has its own limitations: no protection against zero day
attacks, the constant requirement to update signatures, the
likelihood of false positives and false negatives, network
connectivity requirements for updating signatures and resource
constrained devices may not be able to handle and act upon
all known signatures [7]. These limitations and the need to
defend against malware require a different approach to protect
devices. Rather than using a list of known malware signatures,
an inverse approach was used, application whitelisting, to
only allow known good software signatures to run on devices
[7]. In this experiment, the team benchmarked CPU, File
IO, and memory utilization of traditional anti-virus versus an
application whitelisting approach. They observed the efficacy
of using whitelists to protect IoT devices over antivirus when
using their benchmarks. Although, this paper was able to show
improved CPU metrics, it only tested one antivirus program
against a commercial piece of software that enables application
whitelisting. The data’s sample scope was limited as well
considering the only metrics captured were from a Raspberry
Pi board. Therefore, it is unclear if this security management
solution is scalable to the diverse range of IoT devices.

E. IotProtect: Whitelist-based Protection for IoT Devices

IoTProtect follows a similar but more in depth approach
to application whitelisting previously described [7]. The IoT-
Protect team also developed and tested an application for the
whitelisting of applications on IoT devices [24]. However, this
application was designed to be run on a wide range of the
IoT devices due to it being written in bash, the default Unix
shell for many Linux distributions. This decision avoided many
issues with cross compiling agent software to run on different
machine architectures. Writing the program in bash kept the
program incredibly small at only 1.6Kb, which would allow
the program to run on many resource-constrained devices [24].
There were several types of whitelists implemented in the
program, pathnames, MD5 hash values of binaries and a com-
mand line whitelist. Although the application was small and
runs on a wide range of devices, it does have limitations. The
checking and detection of IoTProtect only runs periodically,
with a default of every sixty seconds. Increasing the check
frequency to below thirty seconds started to impact device
performance considerably. This time frame may seem small
but could still lead to device compromise. The program is
also required to be merged into the device kernel or executed
in the initial process to avoid being shutdown by malware. The
solution was tested against a large set of IoT malware such
as the Mirai botnet. The team setup a honey pot, collected
samples and labelled them using a third party service Virus
Total [4]. While, the IoTProtect showed to be effective in
mitigating the impact of malware on a device, it was not an



effective preventative mechanism nor can it facilitate security
updates.

F. Clear as MUD: Generating, Validating and Applying IoT
Behavioral Profiles

Manufacturer Usage Description Profiles are an Internet
Engineering Task Force proposed standard [18]. The standard
hopes to provide a means for devices to signal their networks
what type of functionality they require to properly function. By
defining what is needed for these devices to operate normally,
identifying or defending against unintended network behavior
becomes more attainable. MUD was not created to address
how networks should authorize requests or to be a substitute
for patching and vulnerability management. A MUD profile
can provide network administrators additional protection by
reducing the threat surface of devices to those intended by the
manufacturer. Limiting the threat surface is achieved through
access control lists defined in the profile. Due to the nature
of IoT devices performing specific functions, many have
recognizable communication patterns, building access control
lists will be attainable [23]. MUD Profiles already have large
industry buy-in with firms like Cisco already contributing to
MUD open source projects [1].

Due to MUD Profiles being relatively new and not being
an accepted standard for device network behavior profiling,
adoption is low. The proposed standard is still useful and will
help define how networks should interact with IoT devices.
With the possibility of MUD Profiles becoming an accepted
standard, there were no existing tools to help manufacturers
generate these profiles. To fill this gap, MUDgee was de-
veloped to help these manufactures accurately profile their
devices network requirements [13, 12]. The system analyzes a
devices traffic trace and generates a MUD Profile to spec. This
process can generate wrong and invalid profiles if a device is
already compromised when the analysis occurs. The process of
generating initial profiles was costly from a time perspective,
traffic flows were observed over a period of six months for
each device. Currently the MUD specification allows both
ACCEPT and DROP rules like many firewall implementations
but does not consider priority or order of the rules. Authors of
the MUDGee tool suggest a whitelist only approach to avoid
ambiguity when building MUD Profiles [13, 12]. This idea of
network whitelisting mimics application whitelisting, in that
it is easier to manage what is intended than to block what is
not.

While this solution provides important data about device and
network behavior, it does not prevent malware installation nor
allow for simple firmware updates. Therefore, MUD is best
used as a tactic in IoT security, rather than a comprehensive
solution to security device management.

G. Combining MUD Policies with SDN for IoT Intrusion
Detection

The ability of MUD Profiles to limit the attack surface
of IoT devices is only as effective as the implementation
of these policies in the network. Static and dynamic rules

can be created based on the MUD profile input. These rules
drastically reduce the amount of traffic that is passed forward
to the network intrusion detection system (IDS). Each MUD
Profile has access control entries (ACEs) that are translated
into a set of flow rules [2], these rules are inserted into
a switch or router through the SDN controller. While the
MUD specification requires rule priorities it does not offer a
solution such as only whitelisting [12]. Twenty eight different
consumer IoT products were examined and had MUD profiles
generated. An analysis of the MUD profiles showed a series
of attacks that could be prevented on the devices. A series
of volumetric (reflection/amplification, ARP spoofing, port
scanning) attacks were launched against four of the original
twenty eight devices. These attacks tested the efficacy of using
the MUD Profiles in conjunction with an off-the-shelf IDS
[3]. An analysis of the launched attacks showed the MUD
Profiles limited the attack surface while enabling the IDS
to detect attacks by inspecting a small fraction of exception
packets. Implementing MUD Profiles makes compromising
IoT devices non-trivial and could be used as a foundation for
more advanced anomaly or signature based IDS. However, it
fails to comprehensively manage IoT device security.

H. IoT Platforms

The explosive growth of network connected devices has
led to the development of many IoT cloud platforms. Due to
the wide variety of devices and device types, many domain
specific platforms have emerged as well. According to a
market analysis there are nearly fifty different IoT platforms
that currently exist [20]. These platforms cover several do-
mains such as application development, device management,
data management and monitoring to name a few. Many of
these platforms offer a means for developing and prototyping
quickly, while twenty six offer features for specific application
domains such as the Industrial IoT [20]. The high number of
the different IoT platforms could be out of necessity consider-
ing the lack of standardization for how these devices operate
could be a reason for IoT platform diversity. The domain-
specific nature of these platforms limits their flexibility as
different devices would require entirely different platforms.
Furthermore, these platforms often require a system restart,
which disrupts IoT devices and can impact performance. This
is not ideal for cyber-physical device management and can
contribute to an ecosystem of required partnerships among
certain manufacturers.

I. Industrial IoT Platforms

Industrial IoT devices face different design considerations
than most consumer IoT products. Building a IoT platform to
service the industrial market must consider, but not be limited
to, the following: Energy, how long a device can operate
with a limited power supply; Latency, what are the mes-
saging requirements for processing and network propagation;
Throughput, how much data can be received and transmitted;
Topology, What devices must communicate with each other
along with; and Safety and Security concerns [9]. Some of



these concerns are not only specific to Industrial IoT but,
the concerns are amplified when these systems are built into
and are connected to critical infrastructure, as they may cause
physical damage and even threaten human lives [22]. Platforms
specific to Industrial IoT would suffer from similar drawbacks
for IoT device management as traditional IoT platforms.

J. IoT Botnets

A common theme among IoT devices is their susceptibility
to hostile takeover via botnet. There are many reasons why
botnets have been so effective at overtaking IoT devices [17].
One of the most destructive recent IoT botnets was the Mirai
botnet, the authors of which open sourced the code for the bot
and control server. Due to the availability of the code, multiple
successful variants of Mirai have been released and detected
in the wild, using similar attack vectors but targeting different
device types [17]. The effectiveness of such a command and
control system for IoT devices should be appreciated when
conceiving a mechanism for disseminating updates to disparate
devices.

III. ARCHITECTURE

Learning from the challenges faced by the previously dis-
cussed material concerning IoT device security management,
we chose to base our design on a botnet. Our lightweight agent
is only 1.4MB in size and interacts with an IoT device’s oper-
ating system without interfering with other device processes.
Also, we developed features of the agents including process
whitelisting (based on the deterministic nature of applications)
and network whitelisting (based on the defined behavior of
network traffic for cyber-physical systems like energy delivery
systems). Further, the agent was strategically programmed in
golang.

A. Process Whitelisting

As illustrated in Figure 1, the agent makes use of the Linux
/proc filesystem for process and application monitoring. The
proc filesystem distills all running processes into directories
such as ’/proc/ProcID/’, where ProcID is the ID of the process
running in the OS. Under these directories you can retrieve in-
formation on a process such as: executable name, environment
variables and command line arguments. The agent utilizes this
information to make whitelisting decisions. When the agent is
running, it periodically checks the OS to see what is currently
running. Its whitelisting decisions are based on a local json
file, or one ingested from the central command server. This
file contains a whitelist of processes and applications that
are allowed to be running on the device. Once ingested the
agent compares current running processes to the whitelist. Any
discrepancies between what is running and that list is killed
by the agent process.

B. Network Filter/Whitelisting

In addition to monitoring applications and processes on
device, the agent is also capable of network filtering. Similarly
to how applications are whitelisted, IP addresses and domains

can also be whitelisted by adding them to the whitelist json
configuration file. For network filtering, devices must have
support for the Linux kernel module iptables. The module
allows for the filtering of network packets by creating AL-
LOW/DENY rules that match characteristics of the packets
such as source, destination IPs and port numbers. A limitation
to using the iptables module is, rule order matters; a packet
may technically match two existing rules but only the first
rule would apply. For this reason a general whitelist approach
should be taken, define a default drop policy and explicitly
defining ALLOW rules thereafter.

C. GoLang

The golang language was used because it has broad support
for cross compiling so that it could be run on a wide range
of devices without much investment. Further, as a compiled
language, Golang runs natively and efficiently on the devices
tested.

Fig. 1. Agent Process Monitoring

IV. PERFORMANCE AND METRICS

To test the efficacy of the lightweight agent that was
developed, several testing scenarios were created. The tests
were designed to assess how effectively the agent could handle
multiple whitelisting violations.

A. Environment

The performance tests were run on two separate devices: A
GL-AR750 MIPS 32bit router running OpenWrT and a GL-
B1300 ARM7 64bit router running OpenWrT [5, 6]. ARM and
MIPS are two very common chipsets used in IoT devices [8].
A simple bash script was created for testing. This script spawns
’x’ amount of new processes depending on number passed
as a parameter. The creation of multiple processes simulates
a variable compute environment, the more launched the less
available memory and CPU available for the agent to run.
Each process is launched with the Unix ’time’ utility, this is
to capture runtime statistics when it closes.



B. Testing

For each device, the test script was run ten times for each
of the following scenarios: 5, 10, 25 and 50 processes being
generated. The processes that were launched by the script were
not included in the process whitelist. When the non-whitelisted
process was killed, the time utility prints how long that process
ran for. If several processes were launched, the ”last time”
printout accounts for how long it took the agent to handle all
violations. These times were recorded in Figure 2. In Figure 2,
the frequency which the agent evaluates its running processes
against the whitelist happens every second.

C. Results

The agent performed well under each load’s stress test. The
agent was able to identify all running processes and shut-
down fifty non-whitelisted processes in .4 and 1.13 seconds
respectively for the ARM and MIPS routers. The stress testing
environment is unlikely to be encountered in field deployed
devices but, shows the agent can operate at a high level
without negatively impacting device performance. Looking at
all cases, the agent continued to perform as one might expect.
As the amount of processes launched increased, on average the
amount of time required to shut them down also increased. The
agent was able to perform more quickly on the ARM router,
this is likely attributed to the 64bit architecture and also have
more on device memory. The 32bit MIPS router was able to
operate using a smaller memory footprint which would be
beneficial for heavily constrained IoT devices.

There are several factors that likely skewed the results,
making them slightly slower as well. The first factor impacting
agent performance was the was profiling library embedded in
the agent software. The profile library runs periodically during
program execution and was used to calculate the amount of
memory the agent consumed while operating (Figure 3). The
second factor that impacted agent performance was the test
script. The script generates up to 50 additional processes while
the agent is running on the device, each of which consumes
memory on the device. A future test case may consider starting
the processes before the agent is running to avoid using device
resources when instantiating the test.

One Second Refresh Window (seconds)
Procs Device 1 2 3 4 5 6 7 8 9 10 Average

5 ARM 0.18 0.55 1.21 0.65 1.22 0.16 0.46 0.16 0.87 1.14 0.66
10 ARM 1.27 0.75 1.03 0.49 0.86 0.59 0.28 0.75 0.25 0.79 0.706
25 ARM 0.83 0.48 0.57 1.49 1.02 0.84 0.76 0.42 1.06 1.05 0.852
50 ARM 0.78 0.73 0.73 0.4 0.56 1 1.67 1.67 0.56 1.09 0.919
5 MIPS 0.57 0.72 1.16 0.35 0.93 0.17 0.75 0.32 1.27 0.75 0.699
10 MIPS 0.62 1.39 1.12 0.26 1.02 0.81 0.51 0.61 0.81 0.91 0.806
25 MIPS 0.96 2.11 0.57 0.76 1.15 1.5 1.27 0.63 1.16 0.69 1.08
50 MIPS 1.41 1.37 1.29 1.5 1.59 1.59 1.17 1.13 1.23 1.61 1.389

Fig. 2

Memory Consumption and 1 Second Window
ARM 175.26kB
MIPS 109.85kB

% Delta -45.88%
Fig. 3

V. DISCUSSION

As IoT continues to be used for a wide variety of applica-
tions and are being produced by disparate manufacturers, we
will need a consistent and seamless way to interact, manage
and secure these devices. The sensitivity of IoT to memory and
processing requirements makes this challenge difficult and for
many devices renders heavy solutions such as IoT platforms
unfeasible. As demonstrated in our testing, an agent-based
management solution for IoT can help achieve the needs of
device security management with minimal impact on system
efficiency. While our testing focuses on implementing various
security features for IoT devices, this is one of many examples
of how an agent can be used to manipulate and manage remote
devices.

Not dissimilar to how a botnet controls its army of devices,
an agent-based mechanism for IoT device management can
be highly effective. We believe that the agent proposed can
scale similarly to botnets, suggesting that thousands of devices
could be under management at a given time by a single control
point. Our agent can be seen as a ”friendly botnet”, which has
been demonstrated to be valuable in securing IoT devices in
previous studies [11].

Looking ahead, we suggest manufacturers include agent
software sockets for each IoT device. This would entail an
SDK-like functionality that enables the development commu-
nity or a purchaser of a series of cyber-physical devices (such
as an energy delivery system operator) to develop their own
agent that could be used to manage disparate IoT systems
remotely. At this time, it is unrealistic to believe that the
market will converge on a single IoT device manufacturer
so operators of IoT must become comfortable managing IoT
devices that were not built to inter-operate. This may be
especially true for applications such as energy delivery systems
where legacy devices are prevalent and must be used alongside
new technology.

VI. CONCLUSION AND FUTURE WORK

Our agent solution is a lightweight mechanism that allows
for device management and security without compromising
the integrity of cyber-physical systems. While many other
solutions require system restarts or the integration of hardware
components, our agent is able to provide concurrent process
execution without considerable impact on the processor or
memory. This gives smart city device operators flexibility
and peace of mind while updating even the most fragile IoT
device. As part of our future work, we hope to integrate the
agent with an integrity-first communication protocol like a
blockchain-based light client [21]. In combination with this
communication protocol, our agent will be able to manage
device security updates while guaranteeing communication
integrity.

Acknowledgements

Acknowledgments: This material is based in part on work
supported by the Department of Energy under Award Number
DE-OE0000780.



Disclaimer

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not nec-
essarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

REFERENCES

[1] MUD-Manager, (accessed February, 2019). https://
github.com/CiscoDevNet/MUD-Manager.

[2] Open Networking Foundation, (accessed February, 2019).
https://www.opennetworking.org/.

[3] Snort IDS, (accessed February, 2019). https://www.snort.
org/.

[4] Virus Total, (accessed February, 2019). https://www.
virustotal.com/.

[5] glinet, (accessed March, 2019). https://www.gl-inet.com/
products/.

[6] openwrt, (accessed March, 2019). https://openwrt.org/.
[7] Raghu Nallani Chakravartula and V Naga Lakshmi.

Combating malware with whitelisting in iot-based med-
ical devices. Int J Comput Appl, 167(8):33–37, 2017.

[8] Daming D Chen, Maverick Woo, David Brumley, and
Manuel Egele. Towards automated dynamic analysis for
linux-based embedded firmware. In NDSS, pages 1–16,
2016.

[9] Li Da Xu, Wu He, and Shancang Li. Internet of things
in industries: A survey. IEEE Transactions on industrial
informatics, 10(4):2233–2243, 2014.

[10] Erin Durkin. Software malfunction causes hundreds of
traffic lights across city to fail. NY Daily News, 2018.

[11] Gregory Falco, Caleb Li, Pavel Fedorov, Carlos Caldera,
Rahul Arora, and Kelly Jackson. Neuromesh: Iot security
enabled by a blockchain powered botnet vaccine. In
COINS: International Conference on Omni-layer Intel-
ligent systems, 2019.

[12] Ayyoob Hamza, Dinesha Ranathunga, Hassan Habibi
Gharakheili, Theophilus A Benson, Matthew Roughan,
and Vijay Sivaraman. Verifying and monitoring iots
network behavior using mud profiles. arXiv preprint
arXiv:1902.02484, 2019.

[13] Ayyoob Hamza, Dinesha Ranathunga, Hassan Habibi
Gharakheili, Matthew Roughan, and Vijay Sivaraman.
Clear as mud: Generating, validating and applying iot

behavioral profiles. In Proceedings of the 2018 Workshop
on IoT Security and Privacy, pages 8–14. ACM, 2018.

[14] DongHo Kang, ByoungKoo Kim, JungChan Na, and
KyoungSon Jhang. Whitelists based multiple filtering
techniques in scada sensor networks. Journal of Applied
Mathematics, 2014, 2014.

[15] Minhaj Ahmad Khan and Khaled Salah. Iot security: Re-
view, blockchain solutions, and open challenges. Future
Generation Computer Systems, 82:395–411, 2018.

[16] Constantinos Kolias, Georgios Kambourakis, Angelos
Stavrou, and Jeffrey Voas. Ddos in the iot: Mirai and
other botnets. Computer, 50(7):80–84, 2017.

[17] Constantinos Kolias, Georgios Kambourakis, Angelos
Stavrou, and Jeffrey Voas. Ddos in the iot: Mirai and
other botnets. Computer, 50(7):80–84, 2017.

[18] Eliot Lear, Ralph Droms, and Dan Romascanu. Manufac-
turer usage description specification (work in progress).
Working Draft, IETF Secretariat, Internet-Draft draft-
ietf-opsawg-mud-25, 2018.

[19] Nobakht Medhi, Sivaraman Vijay, and Boreli Roksana.
A host-based intrustion detection and mitigation frame-
owrk for smart home iot using openflow. 11th In-
ternational Conference on Availability, Reliability and
Security, 2016.

[20] Partha Pratim Ray. A survey of iot cloud platforms.
Future Computing and Informatics Journal, 1(1-2):35–
46, 2016.

[21] Elizabeth Reilly, Matthew Maloney, Michael Siegel, and
Gregory Falco. A smart city iot integrity-first communi-
cation protocol via an ethereum blockchain light client.
Software Engineering Research and Practices for the
Internet of Things, 2019.

[22] Ahmad-Reza Sadeghi, Christian Wachsmann, and
Michael Waidner. Security and privacy challenges
in industrial internet of things. In 2015 52nd
ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2015.

[23] Arunan Sivanathan, Daniel Sherratt, Hassan Habibi
Gharakheili, Adam Radford, Chamith Wijenayake, Arun
Vishwanath, and Vijay Sivaraman. Characterizing and
classifying iot traffic in smart cities and campuses.
In 2017 IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS), pages 559–564.
IEEE, 2017.

[24] Chun-Jung Wu, Ying Tie, Satoshi Hara, Kazuki Tamiya,
Akira Fujita, Katsunari Yoshioka, and Tsutomu Mat-
sumoto. Iotprotect: Highly deployable whitelist-based
protection for low-cost internet-of-things devices. Jour-
nal of Information Processing, 26:662–672, 2018.

[25] Xu X., Bessis N., and Cao J. An autonomic agent
trust model for iot systems. The 4th International Con-
ference on Emerging Ubiquitous Systems and Pervasive
Networks, 2013.


