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Abstract 
This paper is excerpted from a thesis submitted to the Engineering Systems Division in partial 
fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts 
Institute of Technology in January of 2002.  This paper addresses problems of attribution that 
arise from the data integration that is exemplified by data re-use and re-distribution on the 
Web.  We present two different perspectives.  We begin with a simple definition of 
attribution, asking what data are we interested in and where does it come from?  A formal 
model and its properties are defined, implementation in an extended relational algebra is 
described, and application to semistructured data on the Web is discussed.   
 
Our formal model of attribution is developed in the established foundation of the Domain 
Relational Calculus (DRC).  Three distinct types of attribution are identified:  comprehensive, 
source, and relevant.  For each type, we consider the attribution of equivalent DRC 
expressions, attribution for composed queries, and granularity.  An algebra is presented to 
implement the model.  The extended algebra is closed, reduces to the standard relational 
algebra, and is a consistent extension of the standard algebra.   
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1  Introduction 
 
In the legend of Theseus, the hero of Athens entered the Labyrinth of Daedalus on the 
Isle of Crete to face the Minotaur.  Critical to both his successful hunt and victorious 
return was the simple ball of thread that Theseus used to trace his path. (Bulfinch 2001; 
Lindemans 2000) As the wealth of content available via electronic networks continues to 
grow, the Internet has become a maze to rival Daedalus' Labyrinth. 
 
Today, the World Wide Web is a popular way to access the Internet.  One group of tools 
to help people navigate the labyrinth of on-line content are integration services that allow 
a user to pose rich queries across multiple sites and aggregation services which 
effectively roll several different sources behind a single point of entry (like Web portals).  
Consider for example, the case of planning a vacation.  The Web may be like having the 
library on your desktop, but in at least one way, the virtual is no better than the physical. 
You still must go to the travel section (in the library or on some Web portal like 
Yahoo!) and search the different travel guides. 
 
Suppose that you are planning a trip to Japan.  There are dozens of on-line resources, 
many accessible over the Web, ranging from guides for budget conscious travelers 
(Lonely Planet, Hostelling International) to more traditional guides (Frommer's Travel 
Guides) to application specific resources (Hotelguide.com, roomz.com).  Note that these 
are resources for researching your trip.  We are not discussing transactions such as 
making reservations or purchasing event tickets.  
 
Rather than laboriously surfing through multiple guides, suppose that you had access to a 
Travel Resource Integrator (TRI).  You might then want to ask: 
 
Q1   What places in Tokyo, Japan may a person traveling alone find a single bed for less than 
25,000¥? 
 
The TRI might provide you with the following table: 
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name price 
Asakusa View 18000
Ginza Dai-Ichi 15000
Dai-Ichi 10000
Grand Palace Hotel 10000
Asakusa Prince 10000
Hotel Sofitel 17000
Tokyo Yoyogi 3000
Tokyo International 3100
Sky Court Koiwa 4500
Sky Court Asakusa 5000

Table 1.1  Results for Q1 

While demonstrating the convenience of such a tool, this example also serves to illustrate 
at least one specific problem with data integration tools like the TRI that applies not only 
to users but to providers of on-line resources such as those accessible over the Web.  
Specifically,  
 
Where does this information come from? 
 
You as a user might like to know where the information comes from for reasons such as 
quality or search.  Some questions related to quality that you might wonder include: 

• Do you trust the source of this hotel list?   
• Does this hotel list draw upon established, reputable resources such as Frommer's 

or Baedeker's, or is the list compiled from the memories of people who traveled to 
Tokyo twenty years ago?   

• Is the information in the list current?  Hotel prices often fluctuate significantly 
depending upon the time of year you wish to travel.  Are all of the listed 
establishments still in business? 

 
Even if you assumed the veracity of the content, once you had a list, you might want to 
read more about a specific hotel.  To read additional information, you would want to look 
in the guide where you originally learned about the hotel in question.  For example, you 
would want to know that the listing for the Asakusa View came from the Frommer's.  
Additional information that might be answered from the sources include:  

• Are any on this list single beds (e.g. youth hostels) rather than single rooms? 
• Which of these lodging options, if any, are located by interesting tourist 

attractions? 
• How can I make a reservation at one of these listings?  Is there a phone number to 

call? 
 
Information providers also have an interest in knowing where information comes from 
and how data flows.  Who should receive acknowledgement for preparing the data in 
your query result?  Who should be paid for this data?  If the information is older than the 
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copyright term limit, is the content transferred to the public domain (and therefore free).  
However, how would individual users know which data fit that category?  A single query, 
moreover, may use information from more than one place.  How are rights and 
remuneration rationed between different contributors?  The problem, for both users and 
the market as a whole, made difficult by the migration from physical to electronic, is only 
exacerbated by the Web, which makes it easy for people to link and frame or copy 
content from other sources. 
 
In summary, then, we have suggested three general reasons why attribution is important:  
data quality, search, and intellectual property.   
 
The question of attribution and its implications is not merely speculative.  mySimon Inc. 
is a comparison shopping service that aggregates data from a number of on-line catalogs 
in a single data warehouse to facilitate user search.  In 1999, mySimon brought suit 
against Priceman, another comparison shopping service, charging, among other claims, 
that "Priceman did not sufficiently attribute its meta-search results to mySimon (Kaplan 
1999)." 
 
eBay, Inc. hosts an on-line auction house that allows users to play the parts of both buyer 
and seller.  Sellers post items for auction in a database of products that buyers may 
browse or search and bid for.  Bidder's Edge (BE), a comparison service not unlike 
mySimon or Priceman, warehoused the contents of several auction houses including 
eBay, Amazon, and Yahoo.  eBay won a preliminary injunction against BE's practice in a 
lawsuit that included the complaint that "caching can lead to outdated information ... 
potentially harming eBay's reputation (Krebs 2000)." 
 
While these two cases highlight the relevance of attribution-related issues, they also 
highlight a third point, the legal distinction between individual users and third party 
services.  Suppose that eBay and mySimon were on-line travel resources.  An individual 
user, like a physical shopper, could certainly have behaved like an integrator by visiting 
different stores and comparing prices without inducing any lawsuits.  What if you asked a 
friend to shop for you, however?  What if you paid a personal assistant to shop on your 
behalf?  What about a commercial service?  Finally, to what degree can the integration 
service "anticipate" your requests and search in advance?  Ultimately, how far removed 
from an individual user can an integration service stray while still claiming to "stand in 
the shoes" of that user? 
 
Details of these cases and others are discussed in a separate paper on policy perspectives 
to the attribution problem space.  However, even this brief introduction serves to 
illustrate the tension generated by integration:  Users benefit from integration, but 
integration can reduce a database producer's incentives to the point that there are no 
databases to integrate.  As Senator DeWine explained, the threat is that "investment in 
databases will diminish over time....  Ultimately, the reliability of information available 
to consumers over the Internet would be undermined (MacMillan 2000)."   
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The thesis from which this paper is excerpted is about technologies and policies for 
balancing the tension between database integration and database production.  Data 
integration is a challenging problem with issues that range from the technical (e.g. 
semantic and syntactic heterogeneity between sources (Goh 1997; Wiederhold 1992) to 
policy (e.g. standards for data organization and presentation (e.g. EDI, ASN.1, XML).  
This thesis identifies a set of challenges to integration that stem from the problem of 
attribution (i.e. knowing where data comes from).  The challenges embrace a range of 
technology and policy questions.  Therefore, the thesis is divided into two parts.  In this 
thesis excerpt, which constitutes Part 1, we adopt a technology-based approach to 
documenting data sources.  A formal model of attribution is introduced to support the 
capability of integrating data from heterogeneous sources.  In a separate thesis excerpt, 
Part 2, we expand the scope of our examination from technologies that support data 
integration to the general issue of data integration regardless of the means for doing so.  
Policy measures to both limit and support integration based upon where information 
comes from are considered.   
 
In Part 1, we propose one technological approach to addressing attribution-related 
challenges.  We develop a formal model of attribution in the context of the relational data 
model. Although motivation for this work largely stems from efforts to introduce 
transparency to the heterogeneous, semistructured environment that is the World Wide 
Web, we build our theory in the relational context because the relational data model 
provides firm theoretical grounding and is the foundation for the most widely used 
commercial database products today. 
 
Because of society's ever deepening dependence upon streams of data, we have not been 
the only individuals interested in the integration-attribution problem space.  It becomes 
clear that over time, no small amount of theoretical and empirical research, often in 
different guises, has already been leveled at the general problem of attribution.  Section 2 
provides a very brief overview of a number of the diverse, perhaps seemingly unrelated 
research streams.  Research approaches and results more similar to our own or upon 
which we draw heavily are revisited and discussed in greater detail throughout the thesis. 
 
Section 3 provides a high-level tour of the model.  Through examples and illustrations, 
we attempt to provide an intuition for the different concepts and principles that the model 
aims to characterize.  In Section 4, we extend our intuitions to a formal model.  Our goal 
in providing a formal model is to offer a consistent framework for interpreting different 
facets of attribution and understanding how those different dimensions relate to one 
another.  Our formalization is based upon the proof semantics of the domain relational 
calculus (DRC).  A brief review of the specific syntax and semantics assumed is 
provided.  
 
After presenting the model and some of its properties, we extend the relational algebra in 
Section 5 to support one instance of the model.  We consider some general properties of 
algebraic extensions such as closure and expressiveness.  Then we evaluate the degree to 
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which the extended algebra implements the model.  Finally, revisiting the example from 
Section 6 that originally motivated our exploration of attribution, we begin a discussion 
of extensions to our model of attribution. 

 

 



 
 
 

2  Related work 
As evidenced by the history of research in citations and references, attribution existed as a 
general principle of data management long before the advent of digital media and electronic 
databases (IFLA 2002).  The need for attribution is only exacerbated by the medium for 
widespread data reuse and redistribution that defines the World Wide Web.  Therefore, it is 
perhaps not surprising that there is a great deal of research that relates in one measure or 
another to the attribution problem space as articulated in Section 1.   
 
Rather than attempting to survey the entire body of related work, we focus on research most 
similar to our own.  Where useful to do so, we attempt to direct the reader to specific 
application domains or other lines of work that may prove fruitful either for future extensions 
or to complement that which is presented in this thesis.   
 
We defined the breadth of the problem space in Section 1 based upon the dimensions of who 
is gathering and integrating data, what data is gathered, where the data comes from, when the 
data is collected, why or on whose behalf the content is collected, and how the integrated 
collection is used.  While there are many technology-based approaches to specific dimensions 
of the problem (e.g. cookies and Web logs are two approaches to identifying who), attribution 
focuses on drawing the connection between what and where.   

2.1 Formal approaches 
Research on the relationship between what and where falls is separable into formal 
approaches and pragmatic experience.  Pragmatic experience is discussed below.  Formal 
approaches in the literature define attribution in one of two ways:  the relational algebra and 
the relational calculus.   
 
The attribution model developed in this thesis was inspired by the Polygen data model, which 
was first presented in (Wang and Madnick 1990).  Though they do not offer a formal 
definition, Wang and Madnick implicitly define attribution algebraically, as part of a system 
to assess data quality in heterogeneous data integration.  In a Polygen relation, every value has 
two sets of metadata associated with it.  For each result value, input relations are classified 
into one of three categories:  a source, an intermediate, or irrelevant.  The source set and 
intermediate set each constitute a heuristic for assessing the quality of a value and the quality 
of the overall query result.  The sources for a value in the result are inductively defined as the 
algebraic input relations that contain those tuples from which said value derives.  
Intermediates are those relations used to evaluate algebraic selection conditions for the query 
result.  Granularity is introduced implicitly.  Specific values in the result (fine-grained result 
granules) are linked to base relations (coarse-grained source granules).  
 
Sadri's work on Information Source Vectors (ISVs) also provides an implicit, algebraic 
definition of attribution by defining the quality of a tuple in the query result (Sadri 1991; 
1994; 1995).  Like the Polygen data model, ISVs also classify input relations into one of three 
roles.  ISVs, however distinguish between corroborating and contradictory sources.  A source 
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vector, with one slot for every input relation in the database, is associated with every tuple of 
every base and intermediate relation.   The ISV for a result tuple is inductively derived from 
the ISVs of the algebraic query inputs.  Each source vector implicitly corresponds to our 
notion of comprehensive attribution.  Because sources are not distinguished from 
intermediates, Sadri can associate a source vector with every tuple in a relation rather than 
every value in a relation.   
 
It is worth noting that there exists a host of other works, some of which we will mention in the 
context of pragmatic approaches to attribution below, that also rely upon implicit, algebraic 
definitions of attribution.  Domain and application specific research in the area of Census data 
tracking, Geographic Information Systems, and security authorization (Ferber 1991; 1992; 
Lanter 1991; Lanter and Surbey 1994; Motro 1996; Motro and Rakov 1998; Rosenthal and 
Sciore 1999a; b; Woodruff and Stonebraker 1997) all determine some meta-characteristic of a 
value or a tuple in a result based upon the processing of input relations.  Some (Woodruff and 
Stonebraker 1997) define fine-grained lineage, associating result values with input values 
rather than input relations.  Note that we may frame some of the research in probabilistic or 
temporal databases similarly (Dey, Barron, and Storey 1996; Dey and Sarkar 1996).  The 
probabilities or temporal ranges are a function of the constituent inputs.  From the perspective 
of defining attribution based upon the query processing operations, however, they are all 
essentially similar.   
 
The research in this thesis builds from earlier work that combines the concept of attribution 
with a specific metric that derives from the input relations such as data quality or access 
permissions.  We extend the existing literature in several respects.  First, we provide an 
explicit definition of attribution.  This definition is couched in terms of the relational calculus 
and the logical foundations for relational database theory rather than implicitly in the algebra.  
Second, we refine the concepts of source and intermediate to distinguish between three types 
of attribution, comprehensive, source, and relevant, to correspond to different user needs.  
Third, based upon the formal model we can express equivalence properties for attribution.  
Finally, we attempt to articulate granularities explicitly and then suggest how the relationship 
between source and result granules may support subsequent algebraic extensions to reduce the 
burden of propagating attribution metadata.   
 
In contrast to the implicit algebraic definitions of some of the early work in source tracking, 
Cui et al. (2000; 2001; 1997 (revised 1999)) provides a formal definition of lineage, in terms 
of the relational algebra.  Reflecting their primary application domain, data warehousing, Cui 
et al. further extend their definition of lineage first to encompass bag semantics and 
aggregation functions and later to more general classes of transformations (e.g. arithmetic 
functions in a select clause, grouping tuples, etc.).  For the base relational operators, the 
lineage of a result is recursively defined by the successive application of operators in the 
query tree.  Equivalence properties of lineage are defined.  As with Sadri (1991), 
corresponding to their focus on comprehensive attribution, Cui et al. (1997 (revised 1999)) 
define attribution for result tuples.  Unlike earlier work, however, they focus on "fine-
grained" lineage and associate result tuples with input source tuples rather than input 
relations.       
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Given our characterization of the attribution problem space, we define three different types of 
attribution rather than one.  Each type of attribution has somewhat different properties with 
respect to both equivalence and granularity.  Lineage, as defined in (Cui, Widom, and Wiener 
1997 (revised 1999)), corresponds to our concept of comprehensive attribution.  We also 
attempt to define the relationship between source and result granules explicitly.   
 
The relational calculus and the relational algebra are equal in their expressiveness.  
Consequently, neither model is necessarily better than the other for defining attribution.  
However, as is echoed in the work by Buneman et al. (1998; 2001), the different semantics of 
calculus queries provides a more direct parallel to languages for querying semistructured data 
on the Web; and it is the reuse and redistribution exacerbated by the Web that underlies our 
interest in attribution.   
 
The second category of theoretical approaches builds or borrows from the first-order predicate 
logic with which the relational calculus is defined.  In the relational calculus, queries take the 
form of expressions on predicates that represent relations.  Intuitively, values in a query result 
are attributable to values from the relational predicates that make the query expression true.  
 
Panorama (Motro 1996) is a system for assessing the quality of data in a query result.  
Panorama explicitly notes that the same quality assessment(s) might not apply uniformly to all 
values in the relation (granularity).  The reliability or completeness of answers are at least 
partially determined by their contributing sources.  Quality properties are thus associated with 
the subset of tuples in a relation for which the property holds.  A tuple subset is proscribed by 
a meta-tuple or select-project view expressed in the relational calculus.  A particular property 
is inherited by a query result if tuples from the corresponding meta-tuple provide a true 
interpretation of the query expression.   
 
Using query expressions to define meta-tuples matches our use of expressions to define 
source granules.  We extend the intuition one step further to associate source granules with 
result values rather than tuples.  This finer granularity supports three different types of 
attribution.  By contrast, Panorama propagates values based upon our notion of source 
attribution or the specific meta-tuple(s) or relations from which result tuples are drawn.  
Finally, we do not associate source granules with particular properties of the sources, thereby 
separating the attribution from a specific motivation (e.g. quality, intellectual property, 
search), leaving the user or application domain to associate their own meta-characteristics. 
 
Buneman et al. (1998; 2001) borrow from the logical intuitions underlying the relational 
calculus, but generalize the data model to a deterministic semistructured data model.  They 
define both why and where data provenance for queries (path expressions) in this context.  In 
a separate work, Buneman et al. (2001; 2001) represents the concept of source granules as 
deep linking into source documents.  They also explore the use of key values (in the relational 
sense) to represent linking into source documents. 
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The research by Buneman et al. is in many ways most similar to the spirit, approach, and 
ultimate direction that we aim to pursue in this thesis.  Indeed although we structure our 
formal model in the relational framework to leverage existing results, our initial motivation 
and long-term aim all along has been to extend the model to semistructured data on the Web.  
Many of our early intuitions about attribution, such as attribution composition or source and 
result granularity, stem from this semistructured orientation (Lee, Bressan, and Madnick 
1997; 1998).   
 
The semistructured data model is more general than the relational model from which we build 
in this thesis.  However, using the terminology loosely, the why provenance for a query on 
semistructured data is the set of sub-trees that matches the path expression in the same way 
that we define comprehensive attribution as the set of substitutions that provides a true 
interpretation of a calculus query expression.  Indeed (Buneman, Khanna, and Tan 2001) 
draws upon the same conjunctive query literature that we leverage in exploring equivalence 
properties (Klug 1988; Sagiv and Yannakakis 1980; Ullman 1989).  Similarly, where 
provenance corresponds to our notion of source attribution, which in turn stems from the 
source set for every value in a Polygen relation.   
 
Framing our work in the relational calculus, as noted earlier, allows us to borrow directly 
from the existing literature on equivalence and containment.  We are, however, limited to 
intuitions and observations about the parallels to querying in semistructured environments.  
We introduce three types of attribution, which better support not only the motivations of the 
attribution problem space but relate to the relationship between source and result granules.  
We also treat explicit equality in theta comparisons independently of the natural join.  This 
reflects a distinction in source attribution (where provenance) relevant to such purposes as 
intellectual property or remuneration.  The natural join suggests that both relations are sources 
for the join attribute whereas explicit equality indicates that each argument to the equality has 
only one, distinct source.  Finally, we also present an extension to the relational algebra as a 
mechanism for explicitly propagating attribution metadata in annotations.   

2.2 Pragmatic approaches 
Turning from different formal methods for defining attribution, we next consider pragmatic 
approaches to providing attribution support in querying and integration.   
We can separate pragmatic strategies for managing attribution into eager and lazy approaches.  
Eager approaches continuously update and propagate attribution metadata as a part of query 
processing.  A'priori evaluation, however, amortizes the cost of attribution maintenance over 
multiple values in the data set and minimizes response time to requests for attribution.  We 
may also think of eager approaches as bottom-up approaches that recursively maintain 
attribution values.   
 
By contrast, lazy approaches, which may also be thought of as top-down approaches, begin 
with a query result and drill backwards to trace sources for specific values only in response to 
specific requests.  Minimal expense is incurred in query processing, but the cost of responding 
to any single attribution request is much higher.  Hybrid models may evaluate the attribution 
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for certain intermediate inputs (e.g. frequently used views) to speed-up response to ex-post, 
lazy attribution requests. 
 
Early work on extensions to the relational data model were, in part, both motivated by and 
demonstrated using eager attribution principles.  Schek and Pistor (1982) articulated their 
approach to the non-first normal form in the context of merging information retrieval and 
database approaches to managing search.  In their NF2 model, data values are extended with a 
relation identifying their source(s) as a means for directing subsequent information retrieval 
queries for additional data.  Their early work echoes an attribution driver identified in Section 
1, searching for related information. 
 
The Polygen data model (Wang and Madnick 1990), upon which this thesis is based, is 
another prototypical example of an eager approach to attribution.  Wang and Madnick extend 
the relational data model with two annotations - one each for references to sources and 
references to intermediates.  Every domain value is therefore a triple and a relation is a finite 
subset of the Cartesian product of such triples.   Polygen extensions to the algebra then update 
values in the source and intermediate annotations with each successive application of the 
corresponding operator.  References are relation names.  The Polygen model therefore 
provides attribution for individual result values using relation-level source granules. 
 
A number of projects that calculate and propagate meta-attributes of data (e.g. time stamps, 
probability, quality, authorization) work in a similar manner.  In (Dey, Barron, and Storey 
1996; Dey and Sarkar 1996), a tuple is tagged with a probability measure or time stamp, 
respectively.  The preservation of certain algebraic equivalencies is demonstrated and, in the 
case of the temporal relational algebra, aggregation functions are also considered.  Both 
closure and consistency with the traditional relational algebra are verified.  Tuples are tagged 
similarly with quality specifications in (Motro and Rakov 1998).  Algebraic extensions 
manage metadata propagation from constituent inputs to results.  In (Rosenthal and Sciore 
1999b), security policies are specified as the manner by which security authorizations are 
aggregated.  For example, the permissions on a specific tuple might be the least upper bound 
of the permissions on all inputs.  
 
That different projects may calculate meta-characteristics at different levels of granularity is 
perhaps more a function of the application domain than a limitation of the eager approach.  
Certain applications (e.g. intelletctual property), may wish to identify the Source of a specific 
value in a tuple while other uses of attribution may require only tuple-level granularity.  The 
principle distinction between these domain specific approaches and the work in this thesis (as 
well as the Polygen data model from which this work derives) is the propagation of source 
meta-characteristics (e.g. quality) rather than source references.  
 
Sadri's (1991; 1994; 1995) work on Information Source Vectors (ISVs) suggests the 
complementary nature of the two approaches to annotation.  The relational data model is 
extended with an ISV annotation for every tuple.  Algebraic extensions update and propagate 
ISVs for result tuples.  The quality of a given tuple is then determined as a function of the 
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corroborating and contradictory sources in the corresponding ISV rather than returning a 
continuously updated metacharacteristic.  Where ISVs are associated with result tuples, the 
attribution in this work is associated with individual values, thereby supporting distinctions 
between types of attribution.   
 
In addition to eager approaches that extend the data representation with annotations are eager 
systems that construct parallel data structures for managing attribution metadata.  Panorama is 
one such system (Motro 1996).  In Panorama, annotations on the quality (e.g. soundness, 
completeness) of tuples in a relation are associated with a meta-tuple for the relation.  A meta-
tuple is simply a select-project view defining the subset of tuples to which the metric applies.  
The set of all metrics applicable to a relation is called a meta-relation.  Queries on relations 
are paralleled by operations on the corresponding meta-relation.   
 
Where eager approaches propagate data continuously, lazy approaches minimize the ex-ante 
cost of maintaining attribution.  A minimum amount of information is stored.  Only when a 
specific request is initiated, is the attribution for a result calculated.   
  
In his work to support data integration and reuse in Geographic Information Systems (GISs), 
Lanter maintains GIS metacharacteristics in a parallel data structure (Lanter 1991; Lanter and 
Surbey 1994).  Where algebraic operators in the relational model process relational tuples, 
GISs process layers.  Lanter defines a frame-based representation to capture layer-level 
metacharacteristics including data transformations.  Operations on layers are paralleled by the 
updates to the corresponding knowledge-base tracking GIS processing.  Specific 
metacharacteristics are therefore associated with each layer in the manner of tuple-level result 
granules.  The lineage for a result is generated by tracing backwards through the frames 
associated with each successive processing step.     
  
Like Lanter's system for Geographic Information Systems, Woodruff and Stonebraker (1997) 
define a system to trace data lineage.  Unlike Lanter's layer-granularity that documents 
metacharacteristics at the level of a data set, Woodruff and Stonebraker register data 
transformations and their inverses.  The inverses allow users to regenerate specific base level 
data inputs to the transformation process.  Original data values are calculated iteratively by 
unfolding successive operations.  The result is fine-grained lineage that traces from a value in 
the result to the source input values rather than merely linking result sets to their constituent 
inputs.   
 
Cui et al. (2001) investigates lineage for general data transformations in the spirit of 
(Woodruff and Stonebraker 1997).  However, it is their earlier work tracing relational queries, 
described in (Cui and Widom 2000; Cui, Widom, and Wiener 1997 (revised 1999)), that our 
extended algebra is most similar to.  Assuming a canonical form of an algebraic query tree, 
Cui and Widom algorithmically construct a tracing query that, for a given result tuple, returns 
the input tuples.  The algorithm works by essentially projecting the result tuple as query 
constraints down the algebraic query.  The resulting lineage is transitive over intermediate 
results and through querying on views.   
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Although the technique does not strictly require maintaining meta information, as used in 
eager approaches, it is possible to achieve greater efficiency in lazy attribution processing by 
utilizing eager approaches in a limited manner.  Cui et al. (1997 (revised 1999)) discover 
significant improvement in lazy performance by storing auxiliary views, which we might 
equate with eager evaluation of attribution metadata for intermediate query results.  
Maintaining a minimal amount of metadata with query processing also enables Cui et al. to 
trace backwards through aggregation functions.   
 
We adopt an annotation approach to managing attribution metadata.  Based upon our formal 
definition of attribution and our articulation of granularity, we redefine the extended relational 
operators to support the formal definition of attribution.  Unlike some of the approaches that 
extend the relational model, we show how general properties of the algebra, such as closure, 
are preserved.  Moreover, unlike approaches that rely upon implicit definitions, we show how 
the algebraic extensions indeed support our logical intuitions about the different 
interpretations of attribution.  Although the algebra tracks source granules at the granularity of 
relation names, it is a straightforward extension to consider variable granularity using 
expressions as in Panorama (Motro 1996) rather than relations (Sadri 1991) or explicit source 
tuples (Cui, Widom, and Wiener 1997 (revised 1999)).   
 
Annotations in a bottom-up manner seems the most general approach for addressing the 
myriad interests that we initially identified in attribution.  Certainly systems designed with 
specific goals in mind might prefer one particular approach over another.  Moreover, the top-
down query tracing implemented by Cui et al. is similar in spirit to how Panorama associates 
result granules with source granules and how we project substitutions onto intermediate 
relational predicates in attribution composition.  
 
Where meta-tuples in Panorama or the metadata in other systems to document data 
probabilities, quality, or authorization (Dey, Barron, and Storey 1996; Dey and Sarkar 1996; 
Motro 1996; Motro and Rakov 1998; Rosenthal and Sciore 1999a) are explicitly associated 
with specific metrics, we define attribution only as the association between source and result 
granules.  Doing so allows us to define different types of attribution and to parametrize 
attribution with different functions for quality, intellectual property, or search metrics as the 
need arises. 
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  SECTION 2 
 

3  Attribution intuitions 
 
In Section 1, we provided some rough boundaries about the attribution problem space and 
some desiderata for a formal approach to that space.  Here, we begin Part 1 of the thesis.  
Beginning with Section 3 and extending through Section 6, we develop a model for 
attribution.  Although we make the model formal in Section 4, we begin in this Section 
by attempting to provide the intuitions behind the features and properties of our proposed 
model.  The intuitions are intended to connect the reader from the problem space defined 
in Section 1 to the formalisms in Section 4.  After presenting the model, we 
operationalize one instance of the model as an extension to the relational algebra.  
Finally, we consider how the model might apply in the emerging semi-structured data 
environment. 
  
Throughout this Section and the remainder of this thesis, we couch many of our examples 
in the context of the relations listed in Table 3.1.  The six relations in Table 3.1 represent 
a number of separate (Web accessible) data sources concerning lodging and tourist 
attractions in Tokyo, Japan.  The relation hotels(HNAME, ROOM, PRICE) lists hotels in 
Tokyo along with a minimum price for rooms in the ROOM category.  The relation 
sites(SNAME, REGION) identifies tourist attractions in Tokyo along with the general 
vicinity where the attraction is located.  The three relations roughguides(HNAME, PRICE, 
STATION, PHONE); jyh(HNAME, PRICE, STATION, PHONE, FAX); and hostels(HNAME, 
PRICE, STATION) all provide listings of youth hostels or other low-budget lodging in 
Tokyo.  The attribute STATION identifies the closest rail station to the associated lodging.  
regions(HNAME, REGION) provides the general geographic location of selected Tokyo 
hotels.  Though the model is developed in the DRC, for readability, the examples in this 
Section are posed in English, SQL, and the calculus. 
 

3.1 The meaning of attribution 
This theory of attribution is based upon the domain relational calculus (DRC), a logical 
formalism for representing and evaluating relations between data domains.  We build our 
model in this environment because, while our motivation is heavily influenced by the 
rapid evolution of data integration on the World Wide Web, most of what is known today 
about managing and manipulating data is rooted in relational terms.  The calculus is also 
the foundation for SQL, one of the most widely recognized and used standards for 
querying and managing information.  In theoretical terms, then, the calculus will allow us 
to be precise about our observations and intuitions.  Pragmatically, much of the data 
being used today, even that accessible over the Web, is still managed and manipulated 
using relational tools built on the calculus.    
 

 



  17 
 
 
 
 

    roughguides     

hotels    HNAME PRICE STATION PHONE  

HNAME ROOM PRICE  Sky Court Asakusa 5000 Asakusa 81-3-3672-4411  

Asakusa View single 18000  Hotel Pine Hill 10000 Ueno-Hirokoji 81-3-3822-2251  

Asakusa View double 20000  Sawanoya Ryoken 5000 Nezu 81-3-3847-4477  

Ginza Dai-Ichi single 15000  Hotel Top Asakusa 7000 Asakusa 81-3-3822-1611  

Ginza Dai-Ichi double 25000  Ryokan Shigetsu 7000 Asakusa 81-3-3843-2345  

Imperial Hotel single 34000       

Imperial Hotel double 39000  jyh     

Dai-Ichi single 10000  HNAME PRICE STATION PHONE FAX 

Dai-Ichi double 80000  Tokyo Yoyogi 3000 Sangubashi 81-3-3467-0163 81-3-3467-9417

Grand Palace Hotel single 10000  Tokyo International 3100 Iidabashi 81-3-3235-1107 81-3-3267-4000

Grand Palace Hotel double 31000  Sky Court Koiwa 4500 Koiwa 81-3-3672-4411 81-3-3672-4400

Asakusa Prince single 10000  Sky Court Asakusa 5000 Asakusa 81-3-3672-4411 81-3-3875-4941

Asakusa Prince double 42000       

Hotel Sofitel single 17000  hostels     

Hotel Sofitel double 22000  HNAME PRICE STATION   

    Tokyo Yoyogi 3000 Sangubashi   

sites    Tokyo International 3100 Iidabashi   

SNAME REGION   Sky Court Koiwa 4500 Koiwa   

Imperial Palace Hibiya   Sky Court Asakusa 5000 Asakusa   

Tourist Information Center Hibiya   Hotel Pine Hill 10000 Ueno-Hirokoji   

Tsukiji Fish Market Hibiya   Sawanoya Ryoken 5000 Nezu   

Hama Rikyu Garden Tsukiji   Hotel Top Asakusa 7000 Asakusa   

Sensoji Temple Tsukiji   Ryokan Shigetsu 7000 Asakusa   

Nakamise Dori Asakusa        

Ameya Yokocho Asakusa   regions    

Ueno Park Ueno   HNAME REGION   

Tokyo National Museum Ueno   Hotel Sofitel Ueno   

Yanaka Ueno   Katsutaro Ueno   

Meji Jingu Shrine Ueno   Dai-Ichi Hotel Hibiya   

    Imperial Hotel Hibiya   

    Asakusa View Asakusa   

Table 3.1  Data for examples 

The interpretation of a calculus expression is the set of variable substitutions that 
correspond to facts in the database and make the formula of the expression true (Maier 
1983).  In the most general sense, we express attribution in terms of the substitutions that 
make the interpretation of the expression true. 

 

Example 3.1  Intuition for attribution 
Q1.  Based upon the database of Table 3.1, we might ask:  What are the names of 
all known lodging establishments in Tokyo, Japan?  We could answer this 
question by considering the union of a query on the relation hotels and a query on 
the relation hostels. 
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SQL 1.1 select HNAME from hotels  
 union  
 select HNAME from hostels 

 
DRC 1.1   {HNAME | hotels(HNAME, ROOMS, PRICE) ∨ hostels(HNAME, PRICE, 

STATION)} 
 

The query result is: 
HNAME 
Tokyo Yoyogi 
Tokyo International 
Sky Court Koiwa 
Sky Court Asakusa 
Hotel Pine Hill 
Sawanoya Ryoken 
Hotel Top Asakusa 
Ryokan Shigetsu 
Asakusa View 
Ginza Dai-Ichi 
Imperial Hotel 
Dai-Ichi 
Grand Palace Hotel 
Asakusa Prince 
Hotel Sofitel 

Table 3.2  Lodging establishments in Tokyo, Japan 

Some of the substi  the following: 
<f("Asakusa View"/HNAME, "single"/ROOMS, 18000/PRICE)>; 

ION)>; 

 
If w alk about different roles that 

urces play based upon the substitutions (facts) from each source used to interpret the 

tutions that provide true interpretations include

<g("Tokyo Yoyogi"/HNAME, 3000/PRICE, "Sangubashi"/STATION)>; 
<g("Sky Court Asakusa"/HNAME, 5000/PRICE, "Asakusa"/STAT
<f("Dai-Ichi"/HNAME, "double"/ROOMS, 10000/PRICE)>    

e further represent relations as sources for data, we can t
so
expression.  Future references to 'sources' in this Section will refer to the relations 
containing the facts which, when substituted into the query expression, produce a true 
interpretation. 
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Example 3.2  Intuition for a "source" 

Given the substitutions for Q1 in Example 3.1, the corresponding sources are: 
relation hotels and relation hostels.  We depict this intuition in Figure 3.1.  From 
the answer, a list of HNAME, we can trace backwards to the corresponding input 
relations.     

hostels 
HNAME PRICE STATION

Tokyo Yoyogi 3000 Sangubashi

Tokyo International 3100 Iidabashi

Sky Court Koiwa 4500 Koiwa

Sky Court Asakusa 5000 Asakusa

single

double

singleGinza Dai-Ichi

doubleAsakusa View

singleAsakusa View

PRICE 
18000 
20000 
15000 
25000 
34000 

ROOMHNAME

Tokyo Yoyogi

Tokyo International 
Sky Court Koiwa 

Ginza Dai-Ichi

Asakusa View

HNAME

hotels

Figure 3.1  Intuition for a "source" 

We saw in Section 1 that there may be different motivations for or interests in attribution.  
Accordingly, our theory defines three explicit types of attribution:  comprehensive, 
source only, and relevant.  Comprehensive attribution identifies everything that was used 
to evaluate an expression.  It identifies every source that was consulted.  Certainly from 
the perspective of remuneration, comprehensive attribution is in the interests of data 
providers.  From a data quality perspective, comprehensive attribution provides a 
measure of completeness regarding the answer to a query.   
 
Source attribution, by contrast, recognizes the difference between "supporting material" 
and the actual facts.  Source attribution identifies the specific relations from which a 
query result is drawn.  We use the metaphor of a footnote in a text citation.  Unlike the 
comprehensive listing of references in a bibliography, a footnote identifies author, title, 
and page number for a specific fact, figure, or quotation.  Certainly for intellectual 
property purposes, source attribution is critical.  Moreover, as measure of quality distinct 
from that of comprehensive attribution, we may use the credibility of a given source to 
label the veracity of the data from that source.  Finally, knowing the specific source of a 
data item provides us with a starting point for seeking additional, related information.   
 
Relevant attribution constitutes a subset of comprehensive attribution.  Given a specific 
result, the relevant attribution identifies the subset of comprehensive references that are 
associated with the source attribution of a particular query.  For example, the 
comprehensive list of references in this thesis numbers over 250 separate works.  
However, our treatment of negation in Section 4 draws from work by Sagiv and 
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Yannakakis (Sagiv and Yannakakis 1980).  However, we found this reference through a 
series of other works (Abiteboul, Hull, and Vianu 1995; Ullman 1989).  Relevant 
attribution therefore traces the supporting material used to arrive at a single query.  In 
SQL terms, we may think of relevant sources as those used in evaluating selection 
conditions.   
 
In simple queries, the comprehensive, source, and relevant attribution may look identical.  
As query complexity increases, however, particularly in the light of the data environment 
of the Web, such distinctions may become increasingly important in parsing the 
attribution problem space. 
 

Example 3.3  Types of attribution 
Q2.  Consider the query where we ask for all hotels by the Imperial Palace in 
Tokyo, Japan.  Based upon the hypothetical database of Table 3.1, we have: 
SQL 2.1 select HNAME 
 from hotels, regions, sites 
 where sites.SNAME = "Imperial Palace" 
 and sites.REGION = regions.REGION 
 and hotels.HNAME = regions.HNAME 
 
DRC2.1 {HNAME | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧ 

hotels(HNAME, ROOMS, PRICE)} 
 

The substitutions include (but are not limited to): 
<f("Imperial"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "single"/ROOMS, 

34000/PRICE)>; 
<f("Imperial"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "double"/ROOMS, 

39000/PRICE) >; 
<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "single"/ROOMS, 

10000/PRICE) >; 
<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "double"/ROOMS, 

80000/PRICE) >; 
 

Now, consider the relations from where these substitutions are drawn.  The 
different substitutions are drawn from three different relations.  Therefore, the 
comprehensive attribution includes these three relations.  But, not all of the 
relations in the FROM clause of the SQL query are used to provide answers.  As 
illustrated in Figure 3.2, some sources are used to evaluate selection conditions 
rather than provide selection attributes.  In particular, the HNAME attribute that 
constitutes the query result appears in only two of the queried relations.  Thus, the 
source attribution includes only two relation names.  Finally, because the relation 
sites is used in evaluating selection conditions, we include it in the relevant 
attribution.1 

 
1 For an example where comprehensive, source and relevant attribution are all different for the same query 
expression, see Example 3.7 where we consider the Union query operator. 

 



  21 
 
 
 
 

 
comprehensive attribution 
{<regions; sites; hotels>} 
 
source attribution 
{<regions; hotels>} 
 
relevant attribution 
{<regions; sites; hotels>}   

HNAME

Dai-Ichi

Imperial

REGION

Hibiya 
Hibiya 
Hibiya 
Tsukiji 

sites

SNAME

Imperial Palace

Tourist Information Center 
Tsukiji Fish Market

Hama Rikyu Garden

hotels 
HNAME ROOM PRICE

… 
Ginza Dai-Ichi double 25000

Imperial Hotel single 34000

regions 
HNAME REGION

Hotel Sofitel Ueno

Katsutaro Ueno

Dai-Ichi Hotel Hibiya

Imperial Hotel Hibiya

Asakusa View Asakusa

Figure 3.2  Example of source attribution 

3.2 Properties of attribution 
A specific challenge to any theory of attribution is treatment of multiple derivations.  
Data may derive from many different sources and/or diverse combinations of sources.  
Accordingly, this theory identifies several distinct categories of multiple derivations and 
provides an explicit treatment for each.  We loosely separate multiple derivations into 
two categories.  Case 1 concerns multiple queries that (appear to) achieve the same result.  
Think of this as asking the same question in two different ways.  For example, "What is 
for dinner" rather than "What are we eating tonight?"  Case 2 addresses a single query 
that may produce the same answer from more than one source.  For example, to discover 
all the hostels in Tokyo, Japan, you might combine the results from looking in both a 
Japanese travel guide and an international youth hostel guide.  Some entries might be 
listed in both places.   
 
Case 1, multiple queries that (appear) to achieve the same result, is further separated into 
three classes:  weak equivalence, strict equivalence, and composition.  Weak equivalence, 
in a colloquial sense, refers to queries that, perhaps in some circumstances, appear as if 
they should be equivalent yet are not logically equivalent and therefore vulnerable to 
incomplete data or other contextual limitations (Ullman 1989).   
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Example 3.4  Weak equivalence 
Q3.  Consider the query that asks for all hotels in Tokyo, Japan.  Given only the 
schemas for the relations in Table 3.1, we might conclude that there are at least 
three different ways to list hotels in Tokyo. 

 
SQL 3.1  select HNAME from regions 
SQL 3.2  select HNAME from hotels 
SQL 3.3 select HNAME from regions, hotels where hotels.HNAME = 

regions.HNAME 
 

Unfortunately, as is often the case in real tables, our example data relations are 
incomplete.  There are a number of dangling tuples (Ullman 1989).  The incompleteness 
is especially apparent when we consider the results from each of SQL 3.1 – 3 as noted in 
Table 3.3.   
 

HNAME  HNAME  HNAME 
Hotel Sofitel  Asakusa View  Hotel Sofitel 
Katsutaro  Ginza Dai-Ichi  Imperial Hotel 
Dai-Ichi Hotel  Imperial Hotel  Asakusa View 
Imperial Hotel  Dai-Ichi   
Asakusa View  Grand Palace Hotel    
   Asakusa Prince    
   Hotel Sofitel    
        

SQL 3.1  SQL 3.2  SQL 3.3 

Table 3.3  Weak equivalence 

In principle, it seems only reasonable that the data in a database should be somehow 
complete and internally consistent.  Yet, different tables appear to list different hotels 
even though they all purport to list hotels in Tokyo, Japan.  Though a subject studied in 
the query optimization literature, we do not consider weak equivalents to constitute 
multiple derivations and so treat them as distinct queries and say nothing more about 
them. 
 
Strict equivalence refers to the characteristic that two queries produce the same result 
given the same database.2  We introduce the modifier "strict" to emphasize the fact that 
the multiple queries use the same data sources.   
 

Example 3.5 Strict equivalence 
Consider again Q2 which we can express in the DRC as 

                                                 
2 We refer to the more formal definition of equivalence based upon containment in Section 4 (Ullman 
1989).   
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DRC 2.1  {HNAME | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧ 
hotels(HNAME, ROOMS, PRICE)} 

DRC 2.2 {HNAME | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧ 
hotels(HNAME, ROOMS, PRICE) ∧ regions(AHOTEL,AREGION)} 

 
A substitution for DRC2.1 might look like: 
<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "single"/ROOMS, 

10000/PRICE)> 
 
A substitution for DRC2.2 might look like: 
<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "single"/ROOMS, 

10000/PRICE, "Asakusa View"/AHOTEL, "Asakusa"/AREGION)> 
 
Note the similarities between the different substitutions.  There are more variables 
in DRC2.2, yet there is a consistency between the substitutions in DRC2.1 and 
DRC 2.2.  Moreover, our intuitions about attribution are the same for both 
queries. 
 
comprehensive attribution: 
{<regions; sites; hotels>} 
 
source attribution 
{<regions; hotels>} 
 
relevant attribution 
{<regions; sites; hotels>} 

 
In particular, for the case of strict equivalence, none of the data sources is defined in 
terms of other available sources.    
 

Example 3.6  Defining a source in terms of other sources 
Q4.  Consider the query for all hostels in Tokyo, Japan 
SQL 4.1 select * from hostels 

 
The reliance of multiple intermediaries upon the same underlying base sources is 
not always immediately apparent, however.  For example, we define relation 
hostels in terms of information from Japan Youth Hostels Association (relation 
jyh) and Rough Guide Travel (relation rg).  The relationship is depicted in Figure 
3.3.  Data is taken from the constituent relations to construct a new relation. 
 
SQL 4.2 select HNAME, PRICE, STATION from jyh 
 union 
 select HNAME, PRICE, STATION from rg   

 

  



24 
 
 
   
In focusing only on strict equivalence, we borrow from the query optimization literature 
to arrive at the result that the attributions for equivalent select, project, join queries 
involving theta inequality and natural join are, in some sense, the same.  Attribution 
equivalence is evident in Example 3.5 where, although DRC2.2 has more variables and 
predicates, there is the sense that there is no extra information gained.  We make this 
intuition explicit when we define attribution equivalence more formally in Section 4.  
However, attribution equivalence is lost for complete and source attribution when we 
consider queries with union. 

roughguides 
HNAME PRICE STATION PHONE

Sky Court Asakusa 5000 Asakusa 81-3-3672-4411

Hotel Pine Hill 10000 Ueno-Hirokoji 81-3-3822-2251

hostels 
HNAME 

jyh 
HNAME PRICE STATION PHONE FAX

Tokyo Yoyogi 3000 Sangubashi 81-3-3467-0163 81-3-3467-9417

Tokyo International 3100 Iidabashi 81-3-3235-1107 81-3-3267-4000

PRICE STATION

Tokyo Yoyogi 3000 Sangubashi

Tokyo International 3100 Iidabashi

Sky Court Koiwa 4500 Koiwa

Sky Court Asakusa 5000 Asakusa

 
Figure 3.3  Views:  defining sources from other sources  

Example 3.7  Attribution equivalence breaks down under union 
Consider again Q3, which we defined as all hotels in Tokyo, Japan. 

We originally answered this question with  
SQL 1.1 select HNAME from hotels 
 union 
  select HNAME from hostels 
 
Perversely, we might equally answer the query this way: 
SQL 1.2 select HNAME from hotels 
 union 
 select HNAME from hostels 
 union  
 select HNAME 
 from hotels, regions, sites 
 where sites.SNAME = "Imperial Palace" 
 and sites.REGION = regions.REGION 
 and hotels.HNAME = regions.HNAME 
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SQL 1.2 corresponds to: 
DRC1.2 {HNAME | hotels(HNAME, ROOMS, PRICE) ∨ hostels(HNAME, PRICE, 

STATION, PHONE) ∨ (regions(HNAME, REGION) ∧ sites("Imperial Palace", 
REGION) ∧ hotels(HNAME, ROOMS, PRICE))} 

 
Compare the attribution between DRC1.1 and DRC1.2 as listed in Table 3.4.  In 
particular, the source attribution takes into account the sources used in evaluating 
each disjunct.  However, the third disjunct is arguably irrelevant because any 
answer in the third disjunct appears also in one of the first two disjuncts.  
 
Returning briefly to Example 3.3, we see that SQL 1.2 and its associated DRC 
help highlight the intuition behind the different types of attribution.  First, 
consider comprehensive attribution.  Each disjunct represents a distinct alternative 
for satisfying the DRC1.2.  However, taken together, every relational predicate in 
the query expression plays some role in evaluating the result.  The reader will 
note that the query only asks about hotel names (HNAME), however.  Hotel 
names are only found in four of the five relations used in the expression.  If, for 
example we wanted to verify the spelling of a particular hotel name, there would 
be no reason to return to relation (sites).  That relation does not list any hotel 
names.  Source and comprehensive attribution are therefore distinct.  Finally, as 
observed earlier, the third disjunct in DRC1.2 is contained (or subsumed) by the 
first two disjuncts.  As a consequence, the third disjunct cannot impact the query 
results and so we omit relations from the third disjunct.  The third disjunct is not 
relevant.3 
  
  

  DRC1.1  DRC1.2 

comprehensive {<hotels>; <hostels>}  {<hotels>; <hostels>; <hotels; regions; sites>} 
source {<hotels>; <hostels>}  {<hotels>; <hostels>; <hotels; regions>} 

relevant {<hotels>; <hostels>}  {<hotels>; <hostels>} 

Table 3.4  Attribution equivalence with union 

The "strict" condition contrasts the third class of queries:  "composition," where sources 
are defined in terms of one another.  We saw in Example 3.6 what it means for a source 
to be defined in terms of other sources, often referred to as views.4  Composition 
addresses the situation where a query can either be composed on a view or expressed 
strictly in terms of the original sources underlying any view definition. 
                                                 
3 It is worth emphasizing that while relations may prove irrelevant, they are not without value.  As in 
comprehensive attribution, we may use equivalent derivation paths to increase our confidence in a 
particular result.  Although outside the scope of this work, we may also consider the role of disjuncts which 
are, in principle, contained but may contain contradictory information (Sadri 1991). 
4 In the relational context, relations defined in terms of other relations are often referred to as views.  In the 
literature on databases and logic, such relations are referred to as intentional databases or IDB (Ullman 
1989). 
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Example 3.8 Query composition 
Q5.  Consider a query for all lodging (hostels and hotels) around the Nakamise 
Dori.  Based upon Example 3.6, we know that we can express the query in terms 
of the relations for hostels and hotels: 
SQL 5.1 select HNAME 
 from hotels, regions, sites 
 where hotels.HNAME = regions.HNAME 
 and regions.REGION = sites.REGION 
 and sites.SNAME = "Nakamise Dori" 
 union 
 select HNAME  
 from hostels, sites 
 where hostels.STATION = sites.REGION 
 and sites.SNAME = "Nakamise Dori" 

 
But, if we know in advance, as we know now, that relation hostels itself gathers 
information from elsewhere, we can also express the query in terms of the underlying 
data sources jyh and roughguides (rg) as: 

 
SQL 5.2 select HNAME 
 from hotels, regions, sites 
 where hotels.HNAME = regions.HNAME 
 and regions.REGION = sites.REGION 
 and sites.SNAME = "Nakamise Dori" 
 union 
 select HNAME  
 from jyh, sites 
 where jyh.STATION = sites.REGION 
 and sites.SNAME = "Nakamise Dori" 
 union 
 select HNAME  
 from rg, sites 
 where rg.STATION = sites.REGION 
 and sites.SNAME = "Nakamise Dori" 
 
We depict the intuition behind composition in Figure 3.4.  SQL 5.1 uses only two 
relations in the second disjunct (hostels and sites).  It is as if relations jyh and 
roughguides are hidden and inaccessible.  Relation hostels then constitutes a view 
on the underlying sources.  The attributions for both queries is shown in Table 
3.5.    
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  SQL 5.1 SQL 5.2 

comprehensive {<hotels; regions; sites>; 
<hostels; sites>} 

{<hotels; regions; sites>; <jyh; 
sites>; <rg; sites>} 

source {<hotels; regions>; <hostels>} {<hotels; regions>; <jyh>; <rg>} 

relevant {<hotels; regions; sites>; 
<hostels; sites>} 

{<hotels; regions; sites>; <jyh; 
sites>; <rg; sites>} 

Table 3.5  Attribution with composed queries 

By definition, the query results of equivalent, composed queries are the same.  The 
attributions, however, can be quite different.  This seems entirely correct.  In the context 
of distributed, heterogeneous information sources, such as the Web today where data is 
frequently reused and redistributed, it is not unreasonable to cite an integrator as a source.  
Factors that are beyond the scope of this thesis, such as reputation or trust may suffice as 
a proxy for or even improve the perceived quality of the data.5   
 
That some needs may be met by attributing to an intermediary source, however, does not 
preempt the need to know more.  We might still wish to look beyond the integrator, 
unfolding layers of reuse and redistribution back to the underlying initial data sources.  
We therefore propose an algorithm for unfolding an attribution by recursively attributing 
values in the intermediary.  Based upon this algorithm, we conclude that we can compose 
an attribution in the same way that we compose relational queries. 
 

Example 3.9  Attribution composition 
Refer again to Q5 from example 3.8.  We can translate the SQL queries into: 
DRC5.1  {HNAME | (hotels(HNAME, ROOMS, PRICE) ∧ regions(HNAME, REGION) ∧ 

sites("Nakamise Dorsi", REGION)) ∨ (hostels(HNAME, PRICE, STATION) ∧ 
sites("Nakamise Dorsi", STATION))} 

 
DRC5.2 {HNAME | (hotels(HNAME, ROOMS, PRICE) ∧ regions(HNAME, REGION) ∧ 

sites("Nakamise Dorsi", REGION)) ∨ (jyh(HNAME, PRICE, STATION, PHONE, 
FAX) ∧ sites("Nakamise Dorsi",STATION)) ∨ (rg(HNAME, PRICE, STATION, 
PHONE) ∧ sites("Nakamise Dorsi",STATION))} 

 
Recall also that predicate hostels(XYZ) in DRC5.1 corresponds to 
hostels(HNAME, PRICE, STATION, PHONE)  jyh(HNAME, PRICE, 
STATION, PHONE, FAX) ∨ rg(HNAME, PRICE, STATION, PHONE) 

                                                 
5 We hypothesize that the data source provides a heuristic for the quality (e.g. timeliness or veracity) of data 
available from the source.  Data that comes from an unknown database producer may benefit (or suffer) 
from integration and redistribution by compounding the positive (or negative) reputation of the integrator.  
If an unknown data source is cited in the Wall Street Journal, the perceived quality of the data might rise 
whereas if the data is cited in a daily tabloid known for exaggeration or hyperbole, the perceived quality of 
the data might fall. 
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roughguides 
HNAME PRICE STATION

Sky Court Asakusa 5000 Asakusa

Hotel Pine Hill 10000 Ueno-Hirokoji

sites

Nakamise Dori

Tsukiji 
Asakusa 

Sensoji Temple
…
Imperial Palace

REGION 
Hibiya 

SNAME

double

singleGinza Dai-Ichi

doubleAsakusa View

singleAsakusa View

PRICE 
18000 
20000 
15000 
25000 

ROOMHNAME

hotels

Ryokan Shigetsu

Hotel Top Asakusa

Sky Court Asakusa

Asakusa View

HNAME

Asakusa

Hibiya 
…
Imperial Hotel 
Asakusa View 

REGIONHNAME 
regions

jyh 
HNAME PRICE STATION

Tokyo Yoyogi 3000 Sangubashi

Tokyo International 3100 Iidabashi

Asakusa

Koiwa

Iidabashi

Sangubashi

STATIONPRICE 
3000 
3100 
4500 
5000 

hostels 
HNAME 
Tokyo Yoyogi 
Tokyo International 
Sky Court Koiwa 
Sky Court Asakusa 

Figure 3.4  Query composition 

 
 

Regardless of how the query is posed, the result is the list of hotels and hostels: 
Asakusa View, Ryokan Shigetsu, Sky Court Asakusa, and Hotel Top Asakusa 

 
Step 1 in the algorithm is to collect the substitutions for the composed query, 
DRC 5.1.  For brevity, we will only illustrate the composition of the relevant 
substitution.  The relevant substitutions are: 
 
{<hotels("Asakusa View"/HNAME); regions("Asakusa View"/HNAME, 

"Asakusa"/REGION); sites("Nakamise Dorsi"/SNAME, "Asakusa"/REGION)>; 
<hostels("Ryokan Shigetsu"/HNAME, "Asakusa"/STATION); sites("Nakamise 

Dorsi"/SNAME, "Asakusa"/STATION)>; 
<hostels("Sky Court Asakusa"/HNAME; "Asakusa"/STATION); sites("Nakamise 

Dorsi"/SNAME, "Asakusa"/STATION)>; 
<hostels("Hotel Top Asakusa"/HNAME) "Asakusa"/STATION); sites("Nakamise 

Dorsi"/SNAME, "Asakusa"/STATION)>} 
 
Informally, in Step 2 of the algorithm, we find the variables applicable to the 
composed relation, hostels and attribute those values against DRC 4.2.  Yielding 
the following substitutions:  
{<rg("Ryokan Shigetsu"/HNAME)>; 
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<rg("Sky Court Asakusa"/HNAME)>; 
<rg("Hotel Top Asakusa"/HNAME)>; 
<jyh("Sky Court Asakusa"/HNAME)>} 

 
To complete the attribution composition, in Step 3, we combine the respective 
substitutions: 
{<hotels("Asakusa View"/HNAME); regions("Asakusa View"/HNAME, 

"Asakusa"/REGION); sites("Nakamise Dorsi"/SNAME, "Asakusa"/REGION)>; 
<rg("Ryokan Shigetsu"/HNAME, "Asakusa"/STATION); sites("Nakamise Dorsi"/SNAME, 

"Asakusa"/STATION)>; 
<rg("Sky Court Asakusa"/HNAME; "Asakusa"/STATION); sites("Nakamise 

Dorsi"/SNAME, "Asakusa"/STATION)>; 
<rg("Hotel Top Asakusa"/HNAME) "Asakusa"/STATION); sites("Nakamise 

Dorsi"/SNAME, "Asakusa"/STATION)>; 
<jyh("Sky Court Asakusa"/HNAME; "Asakusa"/STATION); sites("Nakamise 

Dorsi"/SNAME, "Asakusa"/STATION)>} 
 

This ultimately translates to the following relevant attribution:  
{<hotels; regions; sites>; <rg; sites>; <jyh; sites>}  
 

The process of composing an attribution by iteratively tracing backwards through the 
constituent inputs is depicted in Figure 3.5.  
 
In looking more closely at Examples 3.6 and 3.9, we see that certain data values, such as 
the hostel "Sky Court Asakusa" may appear multiple times.  This observation hints at a 
second category of multiple derivations, those within a single expression. 
 
We originally separated multiple derivations into two categories:  derivations from 
multiple expressions and derivations within a single expression.  We can further separate 
derivations from a single expression into cases of weak equivalence and cases of natural 
join.   
 
Weak equivalence encompasses the idea that tuples in a query result may differ only in 
their attribution.  A straightforward example of this occurs in the case of relational union. 
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sites 

hostels 
HNAME PRICE STATION

Tokyo Yoyogi 3000 Sangubashi

Tokyo International 3100 Iidabashi

Sky Court Koiwa 4500 Koiwa 
Sky Court Asakusa 5000 Asakusa

AsakusaNakamise Dori

TsukijiSensoji Temple

HibiyaImperial Palace

… 

REGIONSNAME

double

singleGinza Dai-Ichi

doubleAsakusa View

singleAsakusa View

PRICE 
18000 
20000 
15000 
25000 

ROOMHNAME

hotels

Ryokan Shigetsu

Hotel Top Asakusa

Sky Court Asakusa

Asakusa View

HNAME

Asakusa View

Hibiya 
Asakusa 

Imperial Hotel
…

REGION HNAME

regions

Figure 3.5  Attribution composition:  Step 1 

Example 3.10 Weak equivalence in union 
SQL 4.1 select * from hostels 
 
SQL 4.2 select HNAME, PRICE, STATION from jyh 
 union 
 select HNAME, PRICE, STATION from rg 

 
in SQL 4.1, there is one substitution associated with Sky Court Asakusa 
g("Sky Court Asakusa"/HNAME, 5000/PRICE, "Asakusa"/STATION, "81-3-3672-

4411"/PHONE) 
 
But in 4.2 there are TWO, one associated w/ querying rg (r) and one associated w/ 
querying jyh (s) 
r("Sky Court Asakusa"/HNAME, 5000/PRICE, "Asakusa"/STATION, "81-3-3672-

4411"/PHONE); 
s("Sky Court Asakusa"/HNAME, 5000/PRICE, "Asakusa"/STATION, "81-3-3672-

4411"/PHONE, "81-3-3875-4941"/FAX)}   
Similar behavior is exhibited when projecting a list of attributes that do not constitute a 
candidate key.    
 

Example 3.11 Weak equivalence in projection 
SQL 3.2 select HNAME from hotels 
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Pick one of the hotels in the result, for example.  As seen in Figure 3.6, for each 
HNAME in the relation hotels, There are two lists of substitutions: 
{("Ginza Dai-Ichi"/HNAME, "single"/ROOMS, 15000/PRICE)>; 
<("Ginza Dai-Ichi"/HNAME, "double"/ROOMS, 25000/PRICE)>}   

                                                

hotels 
HNAME ROOM PRICE

Asakusa View single 18000

Asakusa View double 20000

Ginza Dai-Ichi single 15000

Ginza Dai-Ichi double 25000

Imperial Hotel single 34000

HNAME

Asakusa View

Ginza Dai-Ichi

Imperial Hotel

Dai-Ichi

Figure 3.6  Weak duplicates 

Though logical models of relations, like the relational calculus, rely upon set semantics, 
this theory of attribution treats every instance of a tuple as unique and having a distinct 
attribution with respect to the query and underlying data sources.  To preserve the set 
semantics of the relational data model, attributions for weak duplicates are combined 
together. 
 
The second category of duplication, that occurs in single expressions, stems from looking 
for relationships between relations (called a join operation) rather than taking the union 
of different relations.  Informally, we want to distinguish between comparisons on values 
that represent the same thing and values that merely "look" alike.6  We call values that 
represent the same thing duplicates.  However, we would like to treat values that merely 
"look" alike somewhat differently. 
 

Example 3.12  Multiple derivations in joins. 
To explore this issue, we will reconsider Q5 from earlier.  However, this time, we 
separate the query explicitly into: 
Q6.  Identify hotels around the Nakamise Dori and 
Q7.  Identify hostels around the Nakamise Dori. 
These queries translate to SQL 6 and SQL 7, as indicated below.  Separating the 
queries this way will allow us to look more carefully at how values are compared 
between tables. 

 
6 We consider natural join as distinct from theta comparison where theta is equality.  Natural join is 
represented in the relational calculus as multiple occurrences of the same variable in two or more 
predicates.  In the (named) relational algebra, it corresponds to the idea that different relations may include 
the same domain.  Using a slight variation on the standard notation, this is represented by identical attribute 
names in multiple relation schemes. 
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SQL6 select HNAME  
 from hotels, regions, sites  
 where hotels.HNAME = regions.HNAME 
 and regions.REGION = sites.REGION 
 and sites.SNAME = "Nakamise Dorsi" 
 
SQL7 select HNAME 
 from hostels, sites 
 where hostels.STATION = sites.REGION 
 and sites.SNAME = "Nakamise Dorsi" 
 
We translate the above SQL queries into the following DRC expressions: 
DRC 6 {HNAME | hotels(HNAME, ROOMS, PRICE) ∧ regions(HNAME, REGION) ∧ 

sites("Nakamise Dorsi", REGION)} 
 
DRC 7.1 {HNAME | hostels(HNAME, PRICE, STATION) ∧ sites("Nakamise Dorsi", 

STATION)}  
 
DRC 7.2 {HNAME | hostels(HNAME, PRICE, STATION) ∧ sites("Nakamise Dorsi", 

REGION) ∧ (STATION = REGION)} 
 

(where DRC 6 and DRC 7.1 are the subformulas that we used in DRC 5 and DRC 
7.2 is a logically equivalent expression to DRC 7.1 

 
To find hotels around Nakamise Dorsi, we use geographic region names associated with 
tourist attractions and also associated with the hotel addresses.  Unfortunately, we do not 
have such information available for the youth hostels.  Instead, we match the regions for 
the local tourist attractions with the names of railroad stations.  This is illustrated in 
Figure 3.7.  The scalar values are the same, but they come from different domains.  This 
distinction is made explicit in the calculus by the distinction between multiple 
occurrences of the same variable versus explicit equality.  Consider a few of the 
comprehensive substitutions for the expressions from Example 3.12. 
 

comprehensive substitution for DRC 6 
<"Asakusa View"/HNAME, "single"/ROOMS, 18000/PRICE, "Nakamise Dorsi"/SNAME, 

"Asakusa"/REGION> 
 

comprehensive substitution for DRC 7.1 
<"Ryokan Shigetsu"/HNAME, 7000/PRICE, "Asakusa"/STATION, "Nakamise 

Dorsi"/SNAME> 
 

comprehensive substitutions for DRC 7.2 
<"Ryokan Shigetsu"/HNAME, 7000/PRICE, "Asakusa"/STATION, "Nakamise 

Dorsi"/SNAME, "Asakusa"/REGION> 
 
The intuition is that multiple occurrences of the same variable constitute a single 
substitution that derives from multiple sources.  The substitution "Asakusa"/REGION in 
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DRC 6 stems from two distinct sources;  hotels and region.  Explicit equality, by contrast, 
suggests that the equated variables are different values with their own substitution.  The 
substitution "Asakusa"/REGION is equated with the substitution "Asakusa"/STATION in 
DRC 7, but we do not consider these substitutions to share the same sources.  The 
relation hostels is not a source for "Asakusa"/REGION even though the variables are 
equated and the relation hotels is considered a source.7   

regions

HNAME REGION 
…
Imperial Hotel Hibiya

Asakusa View Asakusa

hostels 
HNAME PRICE STATION

Tokyo Yoyogi 3000 Sangubashi

Tokyo International 3100 Iidabashi

Sky Court Koiwa 4500 Koiwa

Sky Court Asakusa 5000 Asakusa

SNAME REGION

Imperial Palace Hibiya

…
Sensoji Temple Tsukiji

Nakamise Dori Asakusa

sites 

Figure 3.7  Multiple derivations in joins 

Note the implicit equivalence between multiple occurrences of the same variable versus 
the explicit built-in theta-comparison predicate (X=Y) in calculus expressions.  We arrive 
at this conclusion by substituting all occurrences of Y with X and eliminating the explicit 
theta-comparison.  Because our intuition for attribution makes use of the distinction 
despite the implicit equivalence, we conclude that the different types of attribution are not 
equivalent for equivalent expressions when we allow built-in predicates for explicit 
equality. 
 
Negation is the other place in which our observations on the attribution of equivalent 
queries breaks down.  Our intuition is that attribution corresponds to those substitutions 
that correspond to a true interpretation.  What then is the substitution that makes a 
statement about the non-existence of something true?  Applying the conventional 
database interpretation of negation, we suggest that the way to prove a negative 
substitution is by comparing that substitution to all known positive substitutions.  If the 
item of interest is not known to be true, we conclude that it must be false.8 
 

 
7 Note that railroad station names and geographic region names may not always coincide.  The example 
here is intended to illustrate situations where values from different domains are used in comparisons and 
query conditions, suggesting distinct lineage.   
8 The negation as failure interpretation adopted in the database community suggests that a negated 
subformula is true only when no true interpretation of the subformula is found (Ullman 1988). 
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Example 3.13  Negation 

We take our original query and invert it.   
Q8.  Hotels NOT by the Imperial Palace.  We can write this in SQL as: 
SQL 8.1 select HNAME 
 from regions 
 where HNAME not in ( 
  select HNAME 
  from regions, sites 
  where regions.REGION = sites.REGION 
  and sites.SNAME = "Imperial Palace") 
 
One possible interpretation of this expression in the DRC is: 
DRC 8.1 {HNAME | regions(HNAME, REGION) ∧ ¬(regions(HNAME, REGION) ∧ 

sites("Imperial Palace", REGION)} 
 
The answer to DRC 8.1 is:  Hotel Sofitel, Katsutaro, Asakusa View 
 
We know that the Asakusa View is not by the Imperial Palace.  What are the 
corresponding substitutions into DRC8.1 indicating the truth of this?  We need to 
establish, in a positive sense, what hotels are by the Imperial Palace and then, 
given a fixed list of hotels, (those in regions), we keep the remainder.  This 
process is depicted in Figure 3.8.   
 
Consider, for brevity, just one comprehensive attribution for DRC 8.1: 
<f("Asakusa View"/HNAME, "Asakusa"/REGION)  
g("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME) 
g("Imperial"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME)>   
 

To see some of the difficulty created by negation, consider an equivalent expression to 
DRC 8.1, which we present in Example 3.14. 

 

Example 3.14  Attribution equivalence breaks down under negation 
DRC 8.2  {HNAME | regions(HNAME, REGION) ∧ ¬sites("Imperial Palace", REGION)} 

 
DRC 8.2 is logically equivalent to DRC 8.1.  The difference is that we have 
pushed the negation down to the atoms and then distributed the conjuncts and 
disjuncts. 

 
Compare the comprehensive substitution associated with the hotel Asakusa View 
that we examined in Example 3.13.  Notice  
<f("Asakusa View"/HNAME, "Asakusa"/REGION) 
g("Imperial Palace"/SNAME, "Hibiya"/REGION)>    
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REGION 
Hibiya 
Hibiya 
Hibiya 
Tsukiji 

SNAME

Imperial Palace

Tourist Information Center

Tsukiji Fish Market

Hama Rikyu Garden

HNAME

Dai-Ichi

Imperial Hotel

Hotels by the Imperial Palace 

Hotels NOT by the Imperial Palace 

Hotel Sofitel

Ginza Dai-Ichi
Grand Palace Hotel 
Asakusa Prince

Asakusa View
HNAME

All Hotels 

10000

39000

34000

25000

15000

20000

18000

PRICEROOM 
single 
double 
single 
double 
single 
double 
single 

hotels 
HNAME 

Asakusa View 
Asakusa View 
Ginza Dai-Ichi 
Ginza Dai-Ichi 
Imperial Hotel 
Imperial Hotel 
Dai-Ichi 

Asakusa

Hibiya

Hibiya

UenoKatsutaro 
Dai-Ichi Hotel 
Imperial Hotel 
Asakusa View 

UenoHotel Sofitel 
REGIONHNAME 

regions sites

Figure 3.8  Negation in attribution 

3.3 Levels of attribution 
In our last two Examples 3.13 and 3.14 we examined only a subset of the substitutions.  
In particular, we considered only those substitutions corresponding to the result that the 
hotel Asakusa View is not by the Imperial Palace.  This suggests that, rather than 
speaking about the attribution for a query result, we might wish to consider attributing 
only one part of the result.  Returning to the analogy of a bibliography, perhaps the reader 
is only interested in Part 1 of the thesis.  As noted in the Introduction, Part 1 consists of 
Sections 3, 4, 5, and 6.  Taken together, these four Sections present our model of 
attribution.  However, our bibliography, which follows Section 9, is a single list of all 
works referenced throughout the entire document.  The reader might only wish to know 
the works which were referenced in Section 3 – 6.  Perhaps the reader is only interested 
in Section 3.   
 
And because we know that the result of one query can become the source for another 
query (query composition), we extend the idea of attributing one part of the result to the 
idea that we might attribute with only part of a source rather than attribute using the 
relation as a whole.  We refer to these ideas as result and source granularity respectively.   
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The general intuition is that attribution defines pointers or references from a query result 
back to its constituent sources.  Granularity therefore corresponds to the pointer's 
precision.  Beginning with result granularity, at the finest granularity, we might wish to 
attribute a specific instance of a value in a result.  More generally, we might think of all 
instances of a value in a result.  Further coarsening our granularity, we could consider the 
attribution corresponding to a range of values (e.g. an entire tuple, a set of tuples, or 
perhaps a column).  At the limit, we could attribute the entire result relation. 

 

Example 3.15 Result granularity 
Consider Q9, Hotel names, hotel prices, and names of sites around Tokyo, Japan. 
SQL 9 select HNAME, PRICE, SNAME 
 from hotels, sites 

 
DRC 9.1 {HNAME, PRICE, SNAME | hotels(HNAME, ROOM, PRICE) ∧ sites(SNAME, 

REGION)} 
 

As seen in Figure 3.9, we can discuss the attribution associated with the specific 
instance of a result where HNAME = "Dai-Ichi" (corresponding to one tuple).  Single 
rooms by Ueno Park correspond to the following tuple:  <"Dai-Ichi", 10000, 
"Ueno Park"> 
 
The corresponding comprehensive attribution is: 
{<f("Dai-Ichi"/HNAME, "single"/ROOM, 10000/PRICE, "Ueno Park"/SNAME, 

"Ueno"/REGION)>} 
 

We could ask for all instances of "Dai-Ichi" hotel in the result.  Because the query is 
a Cartesian product, the actual solution is quite large, but one part of it includes 
Table 3.6 with the following substitutions: 
{… < f("Dai-Ichi"/HNAME, "single"/ROOM, 10000/PRICE, "Yanaka"/SNAME, 

"Ueno"/REGION)>; 
f("Dai-Ichi"/HNAME, "single"/ROOM, 10000/PRICE, "Meji Jingu Shrine"/SNAME, 

"Ueno"/REGION)>; 
f("Dai-Ichi"/HNAME, "double"/ROOM, 80000/PRICE, "Imperial Palace"/SNAME, 

"Hibiya"/REGION)>; 
f("Dai-Ichi"/HNAME, "double"/ROOM, 80000/PRICE, "Tourist Information 

Center"/SNAME, "Hibiya"/REGION)>; …}   
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Figure 3.9  Source/result granularity 

hotels 
HNAME ROOM PRICE

… 
Imperial Hotel double 39000

Dai-Ichi single 10000

Dai-Ichi double 80000

Grand Palace Hotel single 10000

sites

SNAME REGION 
Imperial Palace Hibiya 
…
Ueno Park Ueno 
Yanaka Ueno 
Meji Jingu Shrine Ueno 

Dai-Ichi 10000 Ueno Park

HNAME PRICE SNAME

… 
Dai-Ichi Yanaka

Dai-Ichi Meji Jingu Shrine

Dai-Ichi Imperial Palace

Dai-Ichi 

10000

10000

80000

80000 Tourist Information Center

 
Dai-Ichi 10000 Yanaka 

Dai-Ichi 10000 Meji Jingu Shrine 

Dai-Ichi 80000 Imperial Palace 

Dai-Ichi 80000 Tourist Information Center

Table 3.6  Result granularity 

Likewise, we might draw the parallel conclusions for source granularity.  We could 
attribute using a specific instance of a substitution (e.g. the source tuple that corresponds 
to the specific instance of a substitution), all occurrences of a substitution in a particular 
source (e.g. every tuple in a source that provides the substitution), or again at the 
extreme, the name of the relation that corresponds to true substitutions.   
 

Example 3.16 Source granularity 
Throughout the Section, we have given answers for sources as relation names.  
Using DRC 9 from Example 3.15, however, we can provide references to the 
sources with varying levels of precision as well. 
 
Attribution for DRC 9  as sources: 
<hotels; sites> 
 
We can also give: 
hotels("Dai-Ichi"/HNAME) 
 
which implicitly indicates all instances in the hotels relation where HNAME = "Dai-
Ichi"  
{<"Dai-Ichi", "single", 10000>; <"Dai-Ichi", "double", 80000>} 
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or we can give an explicit instance of "Dai-Ichi" in the source relation 
<hotels("Dai-Ichi"/HNAME, "single"/ROOM, 10000/PRICE)>   
 

Given that we expressed our intuition about attribution in terms of an expression and a 
result, how might we express interest in the attribution for an explicit granule rather than 
the relation as a whole, given that we have been thinking about attribution in terms of 
answers to queries?  Conceptually, we know that we can think of substitutions that make 
a particular substitution for the free variables (one tuple in the result) true.  However, 
within our framework of attribution for relations, we might also take our cue from the 
observation that the relational calculus is closed.  Closure permits us, as demonstrated 
earlier, to compose queries.  At the same time, we know that we can compose attribution 
as well.  Consequently, if we want all instances or specific instances of values in the 
result, we propose composing a query on the result and then composing the 
corresponding attribution to return the attribution for the result granule of interest.     
 

Example 3.17 Specifying granularity 
We refer again to Q9 Hotel names, hotel prices, and names of sites around Tokyo, 
Japan. 
SQL 9 select HNAME, PRICE, SNAME 
 from hotels, sites 
 
Intuitively, if we are interested in a result granule defined as, all instances of 
"Dai-Ichi" in the result, we think of something like: 
DRC 9.2 {"Dai-Ichi", PRICE, SNAME | hotels(HNAME, ROOM, PRICE) ∧ sites(SNAME, 

REGION)} 
 
In other words, we want all substitutions in the answer where the HNAME is "Dai-
Ichi."  We can construct just such a query if we think of: 
DRC 10  {HNAME, ROOM, PRICE, SNAME | temp("Dai-Ichi", ROOM, PRICE, SNAME) ∧ 

(HNAME = "Dai-Ichi")} 
 
Where  temp(HNAME, ROOM, PRICE, SNAME)  {HNAME, ROOM, PRICE, SNAME | 

hotels(HNAME, ROOM, PRICE) ∧ sites(SNAME, REGION)} 
 
We might also think of a subset of instances of "Dai-Ichi" in the result.  Consider: 
DRC 11 {HNAME, ROOM, PRICE, SNAME | temp(HNAME, ROOM, PRICE, SNAME) ∧ 

(HNAME = "Dai-Ichi") ∧ (ROOM = "single") ∧ (PRICE = 10000)}   
 
Regardless of source granularity, the comprehensive attribution for a value in result tuple 
is the same for every other value in the same tuple.  This makes sense.  A DRC 
expression corresponds to a set of tuples.  Therefore, one list of substitutions that makes 
one instance of the expression true applies to every value in the corresponding result 
tuple.  Likewise, given relation-level source granularity, the comprehensive attribution 
for every value in the result is the same.  Again this makes intuitive sense.  This merely 
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articulates the observation that all of the relations in the WHERE clause of an SQL 
statement apply to the relation as a whole.   
 
Note by contrast that for source or relevant attribution, the attribution of different values 
or tuples are not necessarily the same.  In the UNION case, we saw how weak duplicates 
illustrated a single tuple might have more than one source.  As a more subtle case, refer 
again to the Cartesian product of Q9.   From Figure 3.9, we see how distinct sources can 
associate with only a subset of attributes in a result relation.  
 
In summary, we list the different features and properties captured by our model of 
attribution and discussed throughout this Section.  We present the model more formally 
in Section 4 and subsequently propose an extension to the relational algebra to 
operationalize one instantiation of our theory.  In particular, we demonstrate attribution 
using relation-level source granularity.  We conclude Part 1 by considering how the 
theory might extend into the semi-structured environment of the Web.  
 

• Attribution refers to the substitutions that make the interpretation of the 
expression true.   

• In the case of negation, we use negation as failure semantics to establish that a 
predicate does not hold.   

• There are three distinct types of attribution:  comprehensive, source, and relevant. 
• There are a number of ways in which a query result might have more than one 

attribution: 
o Multiple queries for the same result 
o Weak equivalence 
o Strict equivalence (equivalent expressions using only base relations) 
o Equivalence using composed data sources 
o Weak duplicates 
o Multiple instances of the same variable in an expression (e.g. natural join) 

• For conjunctive queries with theta-comparisons but omitting explicit equality, the 
comprehensive and source attribution of equivalent queries is equivalent.   

• For positive queries, the relevant attribution of equivalent queries is equivalent 
• We can compose the attribution of composed queries (where there is no more than 

one level of negation) by recursively unfolding and attributing sub-queries in a 
depth-first manner. 

• Weak duplicates and multiple occurrences of the same value in different 
predicates of a calculus expression (join variables in a natural join) entail multiple 
derivations of the same row or column (tuple or attribute domain).   

• Theta comparisons involving explicit equality represent different values, each 
with their own, distinct derivation.   

• We can attribute using different levels of granularity on the source side and 
attribute different result granules. 
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• We specify the attribution of different result granules by composing queries on 
the original result.  

 

 



 

4  Formal model 
In this Section, we present our formal model of attribution along with a number of properties 
of the model.  Section 1 offers a brief overview of the domain relational calculus for those 
unfamiliar with the formalism.  Section 2 introduces our definition of attribution in the 
context of the syntax of a domain relational calculus expression.  To formalize the model, we 
begin with the set of conjunctive queries (defined below) and gradually expand the query 
language in the standard way.9  We conclude the Section by relating the formal model back to 
the desiderata originally specified in Section Two. 

4.1 The domain relational calculus 
Our formalization of attribution is based upon the Domain Relational Calculus (DRC).  For 
those already familiar with the DRC, we begin by specifying the calculus syntax and notation 
used in the remainder of this thesis.  For those unfamiliar with the DRC, we follow our 
specification with a brief overview.  The DRC is built upon, and our overview assumes, basic 
familiarity with the first-order predicate calculus. 

4.1.1 Syntax and notation 

We use the set of lists notation for a relation.  Following (Ullman 1988; 1989), at times, we 
make selective use of variable names to denote attributes for readability. We define attribution 
in terms of the interpretation (Maier 1983) of a safe DRC expression, where safety is defined 
syntactically by (Ullman 1988).   
 
A list of substitutions a = <c1/X1,c2/X2,…, cn/Xn> projected on a formula f, written  a(f), 
returns the sub-list of substitutions for the variables in f.  A list of substitutions a is in the 
attribution for an expression E = {x | f(x)} when a has the minimal number of substitutions 
required to recursively interpret every sub-formula f'of f such that s(f) = c and I(f (c/x)) = true.   
 
Furthermore, all expressions are assumed to be in Safe Range Normal Form (SRNF) and 
Relational Algebra Normal Form (RANF) meaning negations are pushed down to atoms and 
existential quantification and connectives are flattened (Abiteboul, Hull, and Vianu 1995).  
We further assume, consistent with RANF, that formulas without negation are expanded into 
prenex disjunctive normal form (DNF).  Given the syntactic safety rules, each disjunct 
therefore projects all and only the set of free variables in the expression.   
 
As a shorthand, for expressions of the form: 
{X1,X2,…,Xn | ∃Y1, Y2,…,Ym)  f(X1,X2,…,Xn,Y1,Y2,…,Ym)} 
We will sometimes substitute: 
{X1,X2,…,Xn | (∃Y1,Y2,…,Ym)  f(X1,X2,…,Xn,Y1,Y2,…,Ym)} 
And when obvious, we will omit the existential quantification entirely: 
{X1,X2,…,Xn | f(X1,X2,…,Xn,Y1,Y2,…,Ym)} 
 

                                                 
9 See (Ullman 1988) and (Abiteboul, Hull, and Vianu 1995).   
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Following (Ullman 1988), we use Extensional Data Base (EDB) to refer to base relations and 
Intentional Data Base (IDB) to refer to relations composed on base relations (e.g. views).   

4.1.2 A review of the calculus 

Let D be a set of disjoint domains over which all relations are defined.  A relational scheme is 
a pair J,D where J is an index (a set of integers from 1 to maxJ) and D is a function, D: J 
 D.  A relation is then defined over a scheme as a finite subset of the Cartesian Product of 
the domains in the scheme.  A tuple is therefore a list of values where the Jth value is drawn 
from the corresponding domain and a relation is a finite set of such lists.   
 
In practice, the set-of-lists notation is equivalent to more conventional attribute-value naming 
(Ullman 1988).  Following Ullman and (Abiteboul, Hull, and Vianu 1995), where obvious to 
do so, we may use carefully selected variable names to denote particular attribute domains.  
We may then denote a relation scheme by a tuple instance consisting entirely of domain 
variables, an ordered list of variable names (A1,A2, … ,AmaxJ) where each AJ is a variable 
name for a value drawn from DJ.   
 
Harkening back to our motivating example from Section 3, variable names might include: 
NAME, PRICE, REGION, ROOM, STATION, etc. 
 

Definition 4.1  Atomic formulas 
Basic formulas in the domain calculus (also called atomic formulas) are expressed in terms of 
relations, domain variables, and Θ, the set of comparison operators (e.g. >, ≥ , =, ≤, <) for 
every domain in D.   
 

1. If r is a relation in d with scheme (A1,A2, … ,An) then r(X1,X2,…,Xn) is an atomic 
formula where Xi is either a domain variable for Di (e.g. of type Di) or a constant ci ∈ 
Di. 

2. If X and Y are domain variables and c is a constant drawn from the appropriate 
domain, then X θ Y, X θ c, and c θ X are all atomic formulae. 

3. The Boolean constants true and false are also atomic formulae.    
 

Example 4.1  Atomic formulas 
hotels(HNAME,ROOM,PRICE) is a predicate for the relation hotels 
hotels('Asakusa View', 'single', 18000) is an atomic formula 
hotels (HNAME, 'single', PRICE) is also an atomic formula as are 
hotels.HNAME = regions.HNAME and PRICE < 90,000.   
 

Definition 4.2  Calculus formula 
We recursively extend our definition of a calculus formula by building upon our atomic 
formulae using the logical connectives  (¬, ∧, ∨) and the quantifiers (∃, ∀) in a manner 
similar to the predicate calculus. 
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1. If f is a formula, then ¬ f is a formula. 
2. If f and g are both formulas, then f ∧ g is a formula as is f ∨ g. 
3. If f is a formula and X is a domain variable, then ∃X f and ∀X f are both formulas 

where free occurrences of X in f are bound by ∃X and ∀X respectively using the 
expected definitions for free and bound (Maier 1983 at 231; Ullman 1988 at 147). 

4. If f is a formula, then (f) is a formula 
 
The parentheses explicitly define groupings of operands as we might expect.  In the absence 
of parentheses, the quantifiers ∃X, and ∀X have highest, equal precedence.  ¬, ∧, ∨ follow in 
decreasing order of precedence.    
 

Example 4.2  Calculus formulas 
If regions(HNAME, Hibya) is a formula, then ¬ regions(HNAME, Hibya) is a formula. 
It therefore follows that (¬ regions(HNAME, 'Hibya')) is a formula. 
(¬ regions(HNAME, 'Hibya')) ∧ hotels(HNAME,ROOM,PRICE) is also a formula. 
Using the quantifiers in conjunction with parentheses can result in some subtly different 
formulas. 
∃HNAME(¬ regions(HNAME, 'Hibya')) ∧ hotels(HNAME,ROOM,PRICE) is not equal to 
∃HNAME((¬ regions(HNAME, 'Hibya')) ∧ hotels(HNAME,ROOM,PRICE)).   
 
We offer a brief aside on the legality of formulas and note that domain variables should be 
used consistently so that in the formula ∃X((¬ regions(X, 'Hibya')) ∧ hotels(X,Y,Z)), domain 
variable X refers to the domain of lodging establishment names and the formula ∃X((¬ 
regions(X, 'Hibya')) ∧ hotels(Z, X, X)) is somewhat nonsensical (Maier 1983 at 231). 
 
Given a formula f, we would like to know what that formula means.  Following Maier, we 
first define a substitution.  We then arrive at an interpretation of f based upon a substitution 
for the free variables in f and the expected meaning of the logical connectives and quantifiers.  
The following definitions for substitutions and interpretations are the foundation of our 
formalism for attribution. 
 
The intuition behind the substitution is to recall that formulas are defined with respect to a set 
of base relations called a database d.  Atomic formulas for relation r in database d correspond 
to base tables in d (or constraints that take the form of comparisons on values that appear in 
one or more initial tables.)  A substitution is a "random" replacement of all free variables in a 
formula with constants from their corresponding attribute domains.  An atomic formula 
denoted by r(X1,X2,…,Xn) is true for all and only the substitutions (c1,c2,…,cn) that are in the 
base table r ∈ d. 
 

Definition 4.3  Substitution 
More formally, let f(X1,X2,…,Xn) be a legal calculus formula as defined earlier where 
X1,X2,…,Xn corresponding to their respective domains are the only free domain variables in f.   
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A substitution of a tuple (c1,c2,…,cn) in f(X1,X2,…,Xn) is denoted by f(c1/X1,c2/X2,…, cn/Xn) 
where ci ∈ Di, the domain corresponding to Ai.  We rewrite f, replacing every free occurrence 
of Xi with ci.  Ground atoms, atomic formulae containing only constants (ki) following the 
substitution, are replaced with true or false as follows: 

1. If the ground atom is a relation r(k1,k2,…,km) then replace the atom in the formula f 
with true if tuple (k1,k2,…,km) ∈ r.   

2. If the ground atom is a comparison ki θ kj then replace the atom in the formula f with 
true or false as appropriate.    

 

Example 4.3  Substitution 
Consider the following formulas based upon the travel database of Section 3: 
f = sites(SNAME, REGION) 
g = ∃ADDRESS (hr(HNAME, REGION, ADDRESS) ∧ sites(SNAME, REGION)) 
 
Suppose that the domain of tourist attractions included : 

{'Imperial Palace', 'Yanaka', 'Fanueil Hall', 'Revere House', 'Tower of London'}  
 
and that the domain of regions included: 

{'North End', 'Beacon Hill', 'Hibiya', 'Asakusa', 'Ueno'} 
 
then the following substitutions would be: 
f('Imperial Palace'/SNAME, 'Beacon Hill'/REGION) = false 
f('Revere House'/SNAME, 'North End'/REGION) = false10 
g('Dai-Ichi'/HNAME, 'Yanaka'/SNAME, 'Ueno'/REGION) =  

∃ADDRESS (hr('Dai-Ichi', 'Ueno', ADDRESS) ∧ true).    
 

Definition 4.4  Interpretation 
The interpretation of a formula f with no free domain variables, written I(f), is recursively 
defined as: 

1. 
2. 

3. 
4. 
5. 

6. 

7. 

                                                

If f is true or false then I(f) is true or false. 
If f is ¬ g and g has no free variables, we say if I(g) is true, I(f) is false.  Otherwise, 
I(f) is false. 
If f is g ∧ h then I(f) is true when both I(g) and I(h) are true and false otherwise. 
If f is g ∨ h then I(f) is false when both I(g) and I(h) are false and true otherwise. 
If f is ∃X(A)g where only X is free in g, then I(f) is true when there is at least one value 
ci ∈ dom(A) for which I(g(c/X)) = true. 
If f is ∀X(g)  where only X is free in g, then I(f) is true when for every value ci ∈ 
dom(A) for which I(g(c/X)) = true. 
If f is (g) then I(f) = I(g).    

 

 
10 note that the Revere House may indeed be in the North End, but this is not a fact in the relation sites.  
Therefore the predicate evaluates to false. 
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Definition 4.5  Domain relational calculus (DRC) expression 
A calculus expression has the form {X1,X2,…,Xn | f(X1,X2,…,Xn)} where, as indicated above, 
f(X1,X2,…,Xn) is a legal calculus formula and X1,X2,…,Xn corresponding to attributes A1,A2, … 
,An are the only free domain variables in f.  The value of an expression E on database d is 
therefore a relation r having scheme J,D for tuples of the form (A1,A2, … ,An) and containing 
all tuples (c1,c2,…,cn) where ci ∈ Di and I(f(c1/X1,c2/X2,…, cn/Xn)) = true.    
 

Example 4.4  A query as a domain relational calculus expression 
We can translate the query which regions have a station or tourist attraction?  Into the following 
expression: 
{REGION | ∃SNAME, STATION (sites(SNAME, REGION) ∨ trains(STATION, REGION))}  
 
A domain calculus expression is therefore merely one way of articulating a query over a set of 
base relations.  The expression {X1,X2,…,Xn | f(X1,X2,…,Xn)} is a query for all tuples in the 
database that satisfy the query constraints in f.  The answer to the query is a relation whose 
schema is (A1,A2, … ,An). 
  
There is one significant problem with this definition of expressions and interpretations.  
Relations are defined as finite subsets of the Cartesian product of the domains D1 × D2 × … × 
Dn.  However, domains themselves could be infinite.11  The problem arises when we attempt 
to find an interpretation for legal calculus expressions that query infinite domains, possibly 
producing infinite relations.   
 

Example 4.5  Negation and infinite relations12 
In Q8 of Section 3, we asked, "List all hotels that are not in the same region as the Imperial Palace 
in Tokyo, Japan."  Knowing that the Imperial Palace is in the Hibiya region of Tokyo, consider 
a simpler variant on this query which asks "List all hotels that are not in the Hibiya region of 
Tokyo."  We might translate this query into the following calculus expression:  
 
 {HNAME |¬regions(HNAME,'Hibiya')}.13    
 

                                                 
11 Consider the domain for the attribute price from our earlier examples.  We certainly would not want the 
database to set an arbitrary bound on the maximum price a hotel could charge for one night's stay.  Likewise, the 
domain for the attribute name might include hotels from around the world including "Le Meridien, Boston" in 
Boston, MA and the "Warwick Hotel" in Philadelphia, PA.  The Cartesian product of name and price includes 
all possible permutations of hotels worldwide and an infinte range of prices.  However, as indicated in our 
example database from Section 3, the relation hotels contains a finite subset of hotel names corresponding to 
establishments in Tokyo, Japan and only the corresponding prices charged by those Tokyo hotels. 
12 We use the example of negation here, but similar problems exist for interpreting existential and universal 
quantification.  See [Maier, 1983 #16 at 244-49. 
13 {name |¬regions(name,"Hibiya")} is shorthand.  The formal expression would be {name|∃ region (¬ 
(regions(name,region)) ∧ (region = "Hibiya"))}.  Because "Hibiya" is the only possible substitution for region, 
we remove the existential quantifier and substitute "Hibiya" as a constant in the remaining expression. 
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The answer, of course, is the presumably rather large set of substitutions for HNAME, (c/name) 
such that (c, 'Hibiya') is not a pair in table regions.   
 
To address the problem of infinite relations, we reach beyond the predicate calculus 
framework to further restrict the types of expressions that we consider evaluable.  This 
concept is called safety.14  The general intuition behind safe calculus expressions is that 
interpretation of domain variables somehow be explicitly constrained to some finite set of 
values.  To guarantee this, we claim that value(s) which make the expression true must come 
from a domain consisting of all values that appear either in the constants or in the (finite) 
relations mentioned in the query.15  
 

Example 4.6  Limited expressions 
Rewrite the previous example to "bind" to a finite domain.  In this case, we use Hibiya: 
NAME | REGIONregionsNAME, REGION  REGION = 'Hibiya' 
 
Both the quantified variable region and the free variable name are limited by relation regions.  
In evaluating the existential quantifier, although the domain for variable region might be 
infinite, we need only consider values that appear in regions.  Likewise, we only consider 
possible names that appear in regions.  
 

Definition 4.6  Safe DRC 
Formally, we define the construction of a safe DRC formula following Ullman (1988; 1989) 
as one where every free variable must appear in at least one non-negated atomic formula that 
corresponds to a finite relation.   
1. There are no uses of universal quantification.  
2. Disjuncts must have the same set of free variables. 
3. For a maximal subformula that is the conjunction of one or more formulas F1 ∧ F2 ∧ … ∧ 

Fm, variables free in any Fi must be limited such that 
3.1. A variable is limited if it is free in a formula Fi that is not a comparison and is not 

negated. 
3.2. If Fi is a comparison X=c then X is limited. 
3.3. If Fi is a comparison X=Y and Y is limited then X is limited. 

4. A negated formula is unsafe unless it appears in a disjunct with one or more non-negated 
conjuncts and the free variables in the negated formula are limited as per rule 3.   

 
Fortunately, it turns out that these limitations do not compromise the expressiveness of our 
queries with respect to the algebraic relational operators with which users are typically aware 
and which we use as a reference (relational completeness).16  Consequently further references 
to the DRC will refer to the safe-DRC unless explicitly noted otherwise.  In particular, we will 
use the DRC and the value of an expression to formally define our concept of attribution. 

 
14 There is a more general notion of safety that does not contribute to our definition of attribution and so is 
overlooked.  See "limited evaluation" in [Maier, 1983 #16]or "domain independence" in (Ullman 1988). 
15 (Maier 1983) 
16 See (Ullman 1988 at 153) for a proof on the equivalence of the safe DRC and the relational algebra. 
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4.2 Attribution and the DRC 
We initially suggested that the intuition for attribution was somehow related to an 
interpretation for the logical expression of a query.  We can now be slightly more specific 
about that idea.  A relation r is the result of a query Q denoted by the DRC expression 
{X1,X2,…,Xn | f(X1,X2,…,Xn)}.  The attribution of the tuples (c1,c2,…,cn) of r when Q is 
evaluated on database d, denoted Attr(r, (c1,c2,…,cn), Q, d) is related to the set of substitutions 
f(c1/X1,c2/X2,…,cn/Xn) such that I(f(c1/X1,c2/X2,…,cn/Xn)) = true. 
 
This must seem rather tautological.  The attribution of a relation is somehow the relation 
itself.  Therefore, we develop the idea by first considering attribution for conjunctive queries 
and then iteratively refining the model over progressively more general classes of queries.   

4.3 Conjunctive queries 
We begin the construction of our attribution model by first limiting the range of possible 
queries to the class of conjunctive queries (CQ).  Were we to limit our model to conjunctive 
queries, attribution would still prove quite useful, for we know that CQ correspond to the 
class of all SQL queries constructed using selection-on-equality, project, and natural join 
(Maier 1983; Ullman 1988).   
 
We define three different types of attribution for CQ expressions.  After providing a definition 
for attribution equivalence, we confirm the equivalence of the attribution for equivalent CQ 
expressions.  An algorithm for composing the attribution of an expression by iteratively 
drilling down through IDB is presented.  We verify that composition produces the same 
attribution as the equivalent, unified query expressed only on EDB.  Finally, we present some 
remarks on attribution granularity.  We note the parallel between attributing some subset of 
values in a result and attributing using only some subset of values in the input sources.   

4.3.1 Attribution concept 

We first define the term conjunctive query and then develop our model by considering our 
original intuition for attribution as a set of substitution lists for the variables in the expression. 
 

Definition 4.7  Conjunctive query 
A conjunctive query is an expression of the form: 
 
X1,X2,…,Xn | Y1,Y2,…,Ym fX X1,X2,…,Xn,Y1,Y2,…,Ym 
 
constructed from a subset of the DRC, as defined earlier, consisting only of domain variables, 
constants, predicates that represent relations, conjunction, and existential quantification.17    

 
17 Because we can rewrite r(X1,X2,…c…,Xn) as the formula (r(X1,X2,…Y…,Xn) ∧ (Y = c)) we see that conjunctive 
queries permit a safe or limited form of equality through multiple occurrences of the same variable in multiple 
conjuncts.  See (Ullman 1988). 
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Example 4.7  Conjunctive queries 
Conjunctive queries from the examples in Section 3 are: 

E1 =  {HNAME | hotels(HNAME, ROOMS, PRICE)} 
E2 =  {HNAME | hostels(HNAME, PRICE, STATION) ∧ sites("Nakamise Dorsi", STATION)} 
E3 =  {HNAME | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧ 

hotels(HNAME, ROOMS, PRICE)}   
 
If attribution consists of the set of substitutions for all variables in the expression, as 
demonstrated in Example 4.3, then attribution appears to combine a number of distinct 
concepts together at once.  For example, there are a number of relations and variables used to 
determine the result that are not reflected in the set of free variables.  Specifically, how do we 
know that the Imperial Palace and the hotels in our answer are in the same region?  We need 
to know what region the Imperial Palace is in and what region each of the hotels are in.  More 
generally, distinct information is conveyed in various subsets of the free and bound variables.        

4.3.2 Types of attribution 

Combinations of free and bound variables in the expression correspond to the intuition 
introduced in Section 3 that there are different types of attribution depending upon a particular 
user's interest.  In this thesis, we will address three distinct subsets of the set of all variables 
and constants in an expression.   
 
Perhaps the simplest attribution is that which we demonstrated in Section 4.3.1.  From an 
intellectual property or remuneration perspective, knowing all of the values and variables 
used, irrespective of the role they play in answering the query, is significant. 
 

Definition 4.8  Comprehensive attribution 
The comprehensive attribution for the relation represented by a CQ expression r = 
{X1,X2,…,Xn | (∃Y1,Y2,…,Ym)  f(X1,X2,…,Xn,Y1,Y2,…,Ym)} is a set of pairs where each pair is a 
substitution list a for all of the variables in f that make f true, and the formula itself.  We will 
sometimes write this as {f(a)} or where pi is a predicate in f and ci is a constant, we might 
write {<pi(ci)>}   
 
Note that for CQ expressions, a minimal list of substitutions must interpret every predicate in 
the expression as true.  For an expression with m + n variables, the substitution list must have 
m + n substitutions.   
 
For E1 in Example 4.7, a substitution a in the comprehensive attribution will provide values 
for the variables, HNAME, ROOMS, and PRICE.  In addition to identifying all sources consulted 
in the query, both a unique substitution list and the set of lists convey additional information.  
In distinct substitution lists for CQ expressions, the same variable can recur in multiple 
predicates of the same formula.  Multiple predicates correspond to multiple sources as in the 
case of an attribute used in a natural join.  Note also that two distinct substitution lists might 
have the same values for all free variables Xi and differ in at most one existentially quantified 
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variable Yj hinting at the issue of multiple derivations raised in Section 3.  From Example 4.7 
we see that each answer in the result is attributable to two distinct substitutions.  We will say 
more about multiple sources below.   
 
A second type of attribution focuses on only the free variables in an expression rather than the 
set of all variables.  Every occurrence of a free variable Xi in a distinct predicate p of a CQ 
corresponds to a source for Xi.   
 

Definition 4.9  Source attribution 
The source attribution for the relation represented by a CQ expression r = {X1,X2,…,Xn | 
(∃Y1,Y2,…,Ym)  f(X1,X2,…,Xn,Y1,Y2,…,Ym)} is the set of pairs where each pair is a substitution 
list a for all variables in predicates of f that contain free variables and make f true, and the 
formula itself.    
 
A user interested in data quality characteristics of the answer that depend upon the sources 
from which the values in the answer are drawn, such as timeliness or accuracy, will examine 
the source attribution for the query result.   
  
A third type of attribution concerns relevant sources.  The quality of an answer to a query 
might depend not only upon values reflected in the result but also upon values used in 
evaluating query (restriction) conditions.  We referred to this distinction in Section 3 as the 
difference between the quality of the answer to the query and the quality of a value in the 
answer. 
  
The general intuition behind relevant substitutions is that omitting or changing one of these 
substitutions could increase or decrease the subset of domain values for any given free 
variable, corresponding to an attribute in the result.18  In Example 4.7, were we to alter the 
condition "SNAME = 'Imperial Palace'" the query result would certainly differ.   
 

Definition 4.10  Relevant attribution 
The relevant attribution for the relation represented by a CQ expression r = {X1,X2,…,Xn | 
(∃Y1,Y2,…,Ym)  f(X1,X2,…,Xn,Y1,Y2,…,Ym)} is the set of pairs where each pair is the formula f 
and a substitution list a for all relevant variables in f that make f true.  We use the term 
relevant to capture constraints on the attribute domains represented by the variables in the 
head of the expression.  All variables in the head (free in the formula for the expression) are 
relevant.   In addition, a bound variable is relevant to the result if renaming the variable to 
some name not already in the expression (or eliminating a constant) would relax a constraint 
on one or more of the attribute domains in the result relation (free in the formula for the 
expression).   

 

 
18 Note explicitly the distinction between restriction conditions and existence conditions represented by Cartesian 
product.  We say more about this in the discussion on result granularity below. 
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Example 4.8 
Consider again the CQ expressions from Example 4.7 

E1 = {HNAME | hotels(HNAME, ROOMS, PRICE)} 
E2 =  {HNAME | hostels(HNAME, PRICE, STATION) ∧ sites("Nakamise Dorsi", STATION)} 
E3 =  {HNAME | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧ 

hotels(HNAME, ROOMS, PRICE)} 
 

In addition, consider the more general CQ expression with domain variables as follows. 
E4 =  {A | p(A,B,C)  q(C,D,D)  r(F,G,H)  s(H,J,J)} 

 
Only HNAME is relevant in E1.  HNAME, a free variable, is relevant in E2.  STATION is also 
relevant in E2.  If we renamed the instance of STATION in relation sites, our new expression 
might appear as E2 = {HNAME | hostels(HNAME, PRICE, STATION) ∧ sites("Nakamise Dorsi", 
STATION2)} and the join condition would no longer constrain the possible values of HNAME.  
Likewise, the substitution "Nakamise Dorsi"/SNAME constrains values of HNAME by placing a 
bound on the values for STATION which in turn restrict HNAME.  Only ROOMS and PRICE are 
not relevant in E3.  The quality of each answer in E3 depends upon our knowledge of where 
the Imperial Palace is located in relation to each of the different hotels.  In E4, neither domain 
variable J nor domain variable H are relevant.  Renaming one instance of H would alter the 
join condition between the relational predicates r and s.  However, while these predicates 
pose an existence constraint on a tuple of the result set, they do not constrain the domain (and 
by extension, the quality) of values in the result set.   
 
We have defined attribution to provide variants on the different sources used to evaluate the 
answer to a query.  However, there is often more than one way to ask a question.  Likewise, 
there are often different ways of answering the same question.  In the next subsection, we 
consider multiple derivations.   

4.3.3 Multiple derivations – the concept 

The concept of multiple derivations addresses the observation that we can arrive at the same 
answer for the same question in different ways.  First, we might ask the same question in 
different ways (equivalent queries).  Second, a single query can produce identical answers in 
different ways.    
 
Assuming the standard, containment-based definition for equivalent queries (Ullman 1989), 
we further divide the expression of equivalent query expressions into two categories:  queries 
defined on a database comprised of base tables (Extension Data Bases EDB) and queries that 
also make use of relations defined in terms of other relations (Intensional Data Base IDB) 
(Ullman 1988).  We refer to these as strict equivalence and composition respectively. 
 
We call equivalent expressions defined on the same, extensional database strict equivalents.  
We first saw an example of strict equivalence in Example 3.5 of Section 3.  Now, we adopt a 
more abstract representation to help generalize the concept. 
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Example 4.9  Strict Equivalence 
Consider the following CQ expressions: 

E5 = {X | p(X,Y,Z)  p(U,V,W)} 
E6 = {Z | p(Z,Y,U)} 

Expressions E5 and E6 are syntactically different, yet they are equivalent.   
 
For equivalent queries defined using both intentional and extensional relations, we use the 
term composition.  We first saw an example of Composition in Example 3.9 of Section 3.  
Now, we provide a more abstract representation. 
 

Example 4.10  Composition 
Consider the following CQ expressions: 
Assume relation s(U,V,W)  {U,V,W | p(U,V,X)  q(W,X,Y)} 
and assume relation E7 = {S,V | s(U,V,W)  r(S,T,U)}. 
We can then find a unifier such that E7' = {S,V | p(U,V,X)  q(W,X,Y)  r(S,T,U)}.   
 
While equivalent queries lead to identical results, we might also think of a single expression 
producing identical results.  For conjunctive queries, consider the same value appearing in 
different predicates as in the case of natural join.  Natural joins in conjunctive queries were 
introduced in Q6 of Example 3.12 in Section 3.  Here, we again offer a more abstract 
representation. 
 

Example 4.11  Natural joins 
E8 = {X | p(V,W,X)  q(X,Y,Z)} 

Any substitution for the formula in E8 must include c/X, suggesting that the relations 
represented by predicates p and q are both sources for c.   
 
Within a single relation we might also think of different sources when we consider non-key 
values recurring in multiple tuples.  We spoke of weak equivalence and defined weak 
duplicates in Example 3.11 of Section 3.  More generally, consider: 
 

Example 4.12 Multiple instances of the same value 
E9 = {Y | p(X,Y,Z)} where we assume no functional dependencies (or only the trivial dependency 
where XYZ → XYZ).  Then, there may well be multiple values of Y corresponding to 
multiple tuples <X,Y,Z> in predicate p.   
 
In describing the issue of multiple derivations for an answer from the same query expression, 
we allude to the idea that a variable substitution might apply in more than one predicate, and 
that a single predicate may have duplicate, non-key values.  Both issues suggest that there 
may be more to granularity than a list of substitutions in the formula for a query expression.  
We may be interested in a specific value (join-attribute or non-key value), and we may wish 
to distinguish between different substitutions in same attribution set.  Issues of result and 
source granularity are addressed beginning in Section 4.3.7. 
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4.3.4 Multiple derivations from different expressions – strict equivalence 

Our general intuition for attribution equivalence is that the substitutions are the same.  In 
other words, equivalent comprehensive attributions should provide the same interpretation for 
the same expressions.  Source and relevant attributions should be equally comparable.  In the 
case of strict equivalence, if two conjunctive queries E1 and E2 are equivalent, then there is a 
containment mapping from E1 to E2 and from E2 to E1 (Ullman 1989).  These containment 
mappings map predicates and variables between E1 and E2 and satisfy our intuitions about 
equivalent comprehensive, source, and relevant attributions.  We therefore conclude that 
under different types of attribution, the attribution of equivalent CQ-expressions are 
equivalent. 
 
First, we provide more formal definitions for what is meant by [comprehensive | source | 
relevant] attribution equivalence.  
 

Definition 4.11  Attribution equivalence 
Two attributions A1 and A2 are equivalent when there is a mapping for every variable and its 
corresponding predicates from A1 to A2 and from A2 to A1.   
 

Example 4.13  Attribution equivalence 
Consider again Example 4.9. 

E5 = {X | p(X,Y,Z)  p(U,V,W)} 
E6 = {Z | p(Z,Y,U)} 

 
We say that the comprehensive attribution AC5  AC6 because the containment mapping from E5 
to E6 and vice versa, establishing the equivalence of E5 and E6, also maps the attribution 
substitutions. 
 
The mapping establishing the equivalence of source attribution AS5  AS6 is just the 
containment mapping for the free variables in E5 and E6.  Likewise for the equivalence of 
relevant attribution AR5  AR6.  The mapping indicates that there is no free variable for a 
relational predicate p in E5, that is not mapped in E6.  This will cause a problem once we add 
the union operator ()  into the query language.   
 
Given our definitions of equivalence, we then propose 
 

Theorem 4.1  Attribution equivalence 
If E1 and E2 are equivalent CQ expressions, then their [comprehensive | source] attributions, 
A1 and A2, are equivalent.  If E1 and E2 are minimal, then attribution equivalence holds 
trivially for comprehensive, source, and relevant attribution. 
 
Lemma 4.1  Comprehensive attributions of equivalent CQ expressions are equivalent.   
This is trivially true by the definition of equivalence between E1 and E2. 
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Lemma 4.2  Source attributions of equivalent CQ expressions are equivalent.   
Because the queries are equivalent, we know that the two expressions define the same 
relation.  Therefore, in a CQ expression, the mapping must take the predicates containing free 
variables in E1 to the predicates containing free variables in E2 and vice versa. 
 

Lemma 4.3  Relevant attributions of minimal, equivalent CQ expressions are equivalent. 
We know that a mapping h from relevant variables in E1 to variables in E2 exists by 
equivalence.  We need to verify that h maps all relevant variables in E1 to relevant variables in 
E2 and vice versa.  From our definition of relevance, we know that we can exclude any 
redundant relational predicate as inherently irrelevant.  Moreover, we know, from the query 
optimization literature, that removing redundant predicates from equivalent CQ expressions  
results in a unique, minimal equivalent CQ expression (Ullman 1989).  As a consequence, the 
relevant attribution of equivalent CQ expressions is trivially equivalent because they are the 
same.  Note that this claim assumes the absence of functional dependencies in the relation.  If, 
for example, a relation has two disjoint candidate keys, then an expression that constrains one 
candidate key could be equivalent to an expression that constraints the second candidate key.   
 
By Lemmas 4.1, 4.2, and 4.3, we conclude that the comprehensive and source attributions of 
equivalent queries is equivalent while the attributions of the minimal equivalents of 
equivalent queries are identical.  

4.3.5 Multiple derivations from different expressions, composition 

A second way in which we get different expressions for the same query is when some 
predicates are defined in terms of others.  As seen in Section 4.3.3, when we allow intentional 
databases (IDB), equivalent CQ-expressions can introduce new predicates and variables.  We 
define the attribution of an expression involving IDB by rewriting the expression in terms 
only of the base data sources following the process of Unification in datalog queries (Ullman 
1988). 
 
The principle of composition establishes that, instead of re-writing the query, we may 
determine the attribution for composed queries in a recursive manner.  First determine the 
attribution A in terms of both EDB and IDB.  Extend each substitution ai  A as follows.  
Treat every reference to an IDB as an independent CQ expression; extend ai by attributing 
each IDB.  For successive unfoldings, assuming that no recursive definitions are allowed, we 
eventually arrive at the attribution for the initial expression in terms of base data sources.  
 

Example 4.14  Attribution composition 
E1 = p  q  r 
r  E2 = s  t  
E3 = p  q  s  t  

 
Step 1.  Get the attribution for E1 in terms of p, q, and r. 
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Step 2.  Project the substitution list from Step 1. onto r. 
Step 3.  Attribute Step 2. on the expression for r. 
Step 4.  Combine the attribution from Step 3. to the attribution from Step 1.   
 
More generally, we propose a CQ expression E' for a database d of the form: 
 p1  p2  …  pn  q1  q2  …  qm 
where pi is a predicate for a relation ri  d and j, qj is a predicate for a relation rj  d and qj 
is defined by a CQ-expression over predicates pi. 
 

Definition 4.12  Attribution of a composed expression 
The attribution of the result r from E' defined on d' in terms only of relations in d, is defined 
as attr(r, E, d) where d explicitly excludes j, predicates qj and E is the re-write of E' in terms 
of d.   
 
It follows that we can build progressively deeper layers of indirection by defining a set of 
predicates rk defined in terms of pi's and qj's and so forth resulting in correspondingly more 
complex re-writes.    
 
While re-writing provides us with a consistent definition for the attribution of expressions in 
the presence of views and base relations, it presents some pragmatic challenges.  Neither user 
nor system may initially be aware of underlying data sources.  Users may be uninterested in 
pursuing the attribution of certain intermediate-level sources.  Rather than re-writing the 
entire query a priori, we would prefer to attribute by iteratively unfolding successive layers of 
IDB as necessary.  
 

Algorithm 4.1  Attribution composition 
 
Compose A, f  (1) 
if f has no q's then return A (2) 
else pick qi, an IDB in f (3) 
 f  p1  p2  …  qi-1  qi+1…qm (4) 
 Compose Unfold A, qi, f  (5) 
 
Unfold A, q  (6) 
if A is ∅ then return   (7) 
else pick a,f  A (8) 
 let g be the formula for IDB E representing q (9) 
 let u be the unifier for h  unifyf,g (10) 
 let E' be E as defined by g with the renaming of u (11) 
 B = attr aq/x, E', d' (12) 
 Rewrite B, ua  aq, h  Unfold A  a,f, q  (13) 
 
Rewrite B, a, h  (14) 
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if B is ∅ then return   (15) 
else pick b,g  B (16) 
 a  b,h  Rewrite B  b,g, a, h  (17)   
 
We use Compose A, f to recurse through the IDB in f.  For each IDB, we find the definition 
for the IDB in line (9) and find a unifier in line (10) to be certain that we can rename variables 
appropriately.  In line (11), we rewrite the expression for the IDB accounting for the variable 
renaming and call this E'.  Finally, we attribute the specific tuple in the IDB by pushing 
constants from the original substitution into the corresponding variables of E'.  We denote this 
as E'aq)/x in line (12).   Because this attribution itself returns a set of substitution - formula 
pairs, we replace the original substitution in A with the set of substitutions from the attribution 
of E'.  Note in line (17) where the set of new pairs uses the unified formula h and combines 
the original substitution a with substitutions for the IDB b.  Line (13) simply removes the 
duplicate substitutions.   
 

Theorem 4.2  Attribution composition 
Attribution composition computes the attribution of a composed expression. 
 
Assume without loss of generality the following CQ expressions E1, E2, E3 defined by the 
formulas f, g, and h respectively s.t. 
E1  f  p1  p2  …  pn  q where q is the only IDB in E1 
E2  q  g   r1  r2  …  rm where ri  d 
E3  h   p1  p2  …  pn  r1  r2  …  rm 
 
Note that the formula g for E2 already has variables renamed and reordered as in Line (10) 
and (11) so that references to E2 in the proof below correspond to E' in Line (12). 
 
Given E1 defined on d' d  q and r, the result of evaluating E1 on d', attribution 
composition computes the [comprehensive | source | relevant] attribution of result r in terms 
of d as defined by attrr, E3, d. 

Lemma 4.4  a3,h  A3 is a comprehensive attribution for E3 if and only if a3,h    
ComposeE1,f . 
 
Case  
Pick a random substitution a3,h  A3 and split it:  Project a3 onto f and g. 
We know that a3f  a1  A1 because i, Ipia3pi/x  true and j, Irja3rj/x  true 
where q is defined by the rj's.  Similarly, we know that a3g  a2  A2'  A2 where A2' as the 
attribution for the tuple defined by a1  a2, a tuple in q. 
Compose  passes A1 to Unfold.  Unfold calls attr a3q, E2, d' which looks for 
substitutions of E2 with a3q pushed into the expression.  Attr a3q, E2, d' is A2'  A2 
because the attribution of E2  A2 and a1g makes E2 true therefore A2'  A2. 
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Unfold is applied to every value of A1 so certainly it calls itself on a1.   
Unfold calls Rewrite with a1 and A2'. 
Rewrite is applied to every element of A2' so certainly is is applied to a2.   
But Rewrite takes h, the unification of f and g, and returns a1  a2 which is a3. 
Case  
If unifyf,g  h, does every pair a1  a2, h appear as a substitution in A3?  Pick some 
arbitrary a1 from a pair in A1.  Now we cannot pick just any a2.  Compose creates A2' from 
attr a1g, E2, d'.  So pick any a2 from a pair  A2'.  We know a1  a2 paired with h appears 
in A3 if it makes E3 true.  i, Ipia1pi/x  true and j, Irja2rj/x  true.  But are E1 
and E2 true at the same time (i.e. do they make h true)? Because we know a2 is from a pair in 
A2' by construction, we know that a2 makes E2 true for a true interpretation of A1.  Therefore, 
we know that a1  a2, h  A3.  
 

Lemma 4.5  a3,h  A3 is a source attribution for E3 if and only if a3,h  Compose 
A1,f where A1 is the source attribution for E1. 
 
Case  
Pick a random source attribution a3,h  A3 and split it:  Project a3 onto f and g.  These are 
just the free variables in E3 and accompanying variables that identify unique instances of 
tuples containing a particular value for a free variable.  We know as before that a3f  a1,f  
A1 because for the predicates pi, E1  E3 and for predicate q, because q is defined in terms of 
the predicates rj, we know that the free variables for q are also assigned in a3f.  Similarly, 
we know again that a3g  a2,g  A2'  A2 where A2' as the attribution for the tuple defined 
by a1  a2, a tuple in q. 
Compose passes A1 to Unfold with q  E2 with formula g.   
Unfold is called on every value of A1 so certainly it is called on a1. 
Unfold calls attr a1g, E2, d' which we know is A2'  A2 because the attribution of E2  
A2 and a1g makes E2 true therefore A2'  A2. 
Rewrite is called for every element of A2' so certainly it is called for a2. 
But Rewrite takes h, the unification of f and g and returns a1  a2 which is a3. 
 
Case  
If unifyf,g  h, Does every pair a1  a2, h appear as a substitution to a relational predicate 
containing a free variable in A3?  Pick some arbitrary a1 from a pair in A1.  Now we cannot 
pick just any a2.  Compose creates A2' = attr a1g, E2, d'.  So pick any a2 from a pair  A-
2'.  We know a1  a2 paired with h appears in A3 if it makes E3 true.  i, Ipia1pi/x  true 
and j, Irja2rj/x  true.  But are E1 and E2 true at the same time (i.e. do they make h 
true)? Because we know a2 is from a pair in A2' by construction, we know that a2 makes E2 
true for a true interpretation of A1.  Therefore, we know that a1  a2, h  A3.  
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Lemma 4.6  a3,h  A3 is a relevant attribution for E3 if and only if a3,h  Compose 
A1,f.  Where A1 is the relevant attribution for E1.   
 
This is more complicated because we need to verify that relevantE3  relevantE1  
relevantE2' where relevantE2'  relevantE2 and relevantE refers to the relevant 
variables in E and likewise for freeE; boundE.  We form relevantE2' as we formed A2' 
previously.  We attribute only the relevant variables in q on the expression E2.  For 
convenience, we assume that the CQ expression is minimal.   
 
Case  
Pick some relevant attribution a3,h  A3 and split it:  Project a3 onto f and g.   
We need to establish that a3f  a1,f  A1 and a3g  a2,g  A2'  A2 where A2' as the 
attribution for the tuple defined by a1  a2, a tuple in q. 
A substitution cX is in a substitution list for a3 because either X is free in E3 or c/X joins two 
relational predicates, at least one of which is recursively joined to a relational predicate 
containing a free variable or is a constant from the original query expression that appears in a 
relational predicate recursively joined to a predicate containing a free variable of E3. 
 
Case 1. X  relevantE3 and X  freeE3.  FreeE3  X  freeE1  relevantE1 by 
definition of the equivalence of E1 and E3.   
for X  freeE3  Y  freeE2, Y must also be free in E1 because E2 is q in E1 (e.g. Y  
freeE2  Y  freeE1).  Consequently, at least for the relevant variables in E2 that are free, 
we know a2  A2'  A2 
 
Case 2.  X  relevantE3 joins relational predicates to a recursively joined set of relational 
predicates or X constrains one predicate in a recursively joined set of relational predicates 
(e.g. X is a constant or X appears multiple times in a single relation).  All such predicates are 
in the set pi and at least one joined predicate contains a free variable in h.  Then X is relevant 
in E1 so a3f  a1 for a1,f  A1. 
 
Case 3.  X  relevantE3 is like Case 2 except all such predicates are in the set rj.  Then X is 
relevant in E2 so a3g  a2,g  A2'  A2 where A2' as the attribution for the tuple defined by 
a1  a2, a tuple in q.  (Recall that g  q in E1). 
 
Case 4.  X  relevantE3 appears in both some predicate pi and some predicate rj.  Then X 
must appear in predicate q of E1 (X is not free in E1 so it must be bound in E1 and appear in q 
in order to appear in both pi and rj in E3).  Therefore X is relevant in E1 so a3f  a1 for a1,f 
 A1. 
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It is possible that a3g is empty, which occurs when we consider a Cartesian Product and 
then do not restrict variables between arguments to the Cartesian Product.  In this case, 
attribution relevance is trivially true in the pi's. 
 
From here, we do the same unfolding as before and conclude that Compose returns a1  a2 
which is a3.  
 
Case  
Pick some random substitution list a1  a2 as before and verify that a1  a2,h  A3. 
Proof by contradiction.  Suppose not.  Then there must be a substitution cX  a1  a2, cX  
a3, or cY  a3, cY  a1  a2. 
 
Case 1.  Pick Y.  If Y is relevant in E3, then Y must constrain the free variables in h in some 
way.  
If Y is a free variable, then c Y  a1, a contradiction.   
If Y constrains a predicate containing a free variable through some recursively joined set of 
predicates amongst the pi's, then cY  a1, a contradiction.   
If Y constrains a predicate containing a free variable through some recursively joined set of 
predicates amongst the rj's  and is a1  a2 as assumed above, then cY  a2, a contradiction. 
If Y is relevant and appears in both some predicate p and some predicate r then cY  a1, a 
contradiction (see Case 4 for the  direction).   
Therefore, by contradiction, we conclude that there is no cY  a3, cY   a1  a2. 
 
Case 2.  Pick X.   
If cX  a1 because it is a free variable in E1, then by definition, cX  a3, a contradiction. 
If cX  a1 because it constrains a free variable through predicates pi, then cX  a3, a 
contradiction. 
If c/X  a1 and appears in both in q's and p's, then cX  a3, a contradiction. 
Now we need to be careful.  Remember that a2 is selected from attributing a1g.  It is 
possible for a1g   as in the case of Cartesian Product.  attr a1g, E2, d' is non-empty 
only when there is a relevant variable in q.   
If cX  a2 because it is free in E2 and free in E1, then we know cX  a3, a contradiction. 
If cX  a2 because it is free in E2 and bound and relevant in E1, then we know cX  a3, a 
contradiction. 
If cX  a2 because it is bound in E2, occurs among the predicates rj and constraints a free 
variable in E2 that is relevant in E1 (through predicate q in E1), then we know cX  a3, a 
contradiction.  
 
Therefore, we conclude that attribution composition computes the attribution of a composed 
expression.  
 
It is important to note the subtlety required in composing relevant attribution.  Our definition 
of relevance depends upon drawing a distinction between constraints on attribute domains and 

 



   59 
 
 
   
 

                                                

explicit query syntax.  We saw some challenges for managing relevant attribution in Example 
3.9 of Section 3.  Consider, more generally, two equivalent queries where selections are 
pushed down in one case but not in the other. 
 

Example 4.15  Composing relevant attribution  
 E10 = A | pABCDEF ∧ sFGH 
 E11 = A | qABC ∧ rDEF ∧ sFGH 
 where pABCDEF  qABC ∧ rDEF 
 
Syntactically, we observe that F is relevant to A in E10 but not in E11.  Yet, the equivalence of 
E10 and E11 confirms that F indeed does not constrain values of A in the result.19    
 
Theorem 4.2 confirms our intuitions about how attribution should work in the context of 
composed queries.  It indicates that, at least for conjunctive queries, we can recursively drill 
down through progressive layers of indirection.  More generally, Theorem 4.1 and Theorem 
4.2 together allow us to conclude that, though there are many different ways to construct a CQ 
expression, comprehensive,  source, and relevant attributions for equivalent CQ expressions 
are equivalent.  

4.3.6 Multiple derivations within a single expression 

We saw in Section 4.3.3 how different substitutions might correspond to the same values 
within a single expression.  Both multiple occurrences of a single variable and multiple 
substitutions proving the same result are modeled in a straightforward manner. 
 
Multiple occurrences of a variable between expressions, as in the concept of relevant 
variables, are consistent with the semantics of algebraic natural join.  That a single variable 
appears as a join attribute suggests that it derives from two or more distinct relations in a 
single expression.  See Example 4.11.  We will say more about what it means to derive from a 
relation rather than from a substitution in our discussion of granularity to follow. 
 
In addition to identifying duplicate values through multiple occurrences of a single variable in 
an expression, non-key values can repeat in different facts of a single predicate corresponding 
to different tuples of a single relation as in Example 4.12. 
 
Rather than being problematic, however, we believe that this highlights a benefit of using 
substitutions to define attribution.  Duplicate values suggest an opportunity for users to 
explicitly identify either a specific instance of a value or all such instances.  In the relational 
data model we know that we can identify specific instances through functional dependencies.  
That our attribution model draws a distinction between specific instances of a value and all 
such instances introduces the concept of granularity. 

 
19 Note that we are essentially saying that composition holds for relevant attribution because we explicitly define 
composition and relevance that way.  
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4.3.7 Granularity – the concept 

The intuition behind granularity is that attribution is simply a pointer from query results to 
query sources.  Granularity addresses the precision with which the pointer identifies data in a 
source or in a result.  Source granularity allows the user to receive a list of references that 
provides greater (or less) detail.  Note that a substitution, defined as a list of value-
substitutions and the formula to which the substitutions are applied, implicitly associates 
values with one or more relations.  As a consequence, rather than a substitution value, we 
might return the tuple(s) containing a value or even the relation name.  Source granularity was 
first discussed in Examples 3.15 and 3.16 of Section 3.  More abstractly, consider: 
 

Example 4.16  Source granularity 
E12 = A, E, F | pA, B, C  qC, D, E  rF, G, H 

where the source of interest is represented by predicate pA, B, C 
if a is a substitution list for the formula of E12 then ap  c1A, c2B, c3C and the substitutions 
make predicate p true.  We can think of a specific tuple instance as a source for the evaluation 
of E12, c1, c2, c3.  At the opposite extreme, we might roll-up all such tuple references by 
identifying the relation for predicate p as a source.  The two poles define a continuum where, 
using the notation loosely, we can specify some tighter bound on tuples from the base relation 
that are used to evaluate the result.  Consider, for example, c1,_,_  as the set of all tuples in 
the relation for predicate a subset of tuples in the relation for predicate p where the value of 
the first attribute is c1.   
 
Similarly, result granularity allows the user to ask attribution questions to varying degrees of 
specificity.   Initially, we assumed that attribution applied to a query result as a whole.  
Implicitly, however, we accepted the notion that users might have an interest in only one 
portion of the result.  Indeed our algorithm for attribution composition exploits the fact that 
we can attribute parts of relations.  Rather than asking for the attribution of a relation defined 
by an expression, we may wish to know the attribution for a specific tuple, column, or value.  
Example 3.17 of Section 3 offered a first example of result granularity.   
 

Example 4.17  Result granularity 
Consider  

E13 = A, B, E | pA, B, C  qC, D, E  
 

Again using the notation loosely, we might demonstrate an interest only in tuples where the 
value for variable B is c2 (denoted _, c2B,_ ).  For example, all students in a student database 
who have the last name "Smith."  At the extreme, we might wish to attribute only a single, 
specific tuple (c1A, c2B, c3C.   
 
We can therefore think of a query result as a relation and the attribution of that result as the 
corresponding input relations.  However, being able to specify different granularities is useful 
because it enables precision while at the same time introducing possible efficiencies.  When 
we attribute a relation, we do not necessarily know which substitutions correspond to specific 
values in the relation.  Intuitively, every value is the result of distinct substitutions.  If such 
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exactitude is not necessary, however, as in the case of the list of references at the end of a 
text, attributing a group of values to a single list of relation names reduces the amount of 
necessary attribution metadata. 

4.3.8 Source granularity 

In source granularity, we vary the precision with which we identify the formula and the one or 
more corresponding variable substitutions that together define an attribution substitution.  We 
hinted at source granularity when we discussed multiple derivations within a single 
expression.  In particular, a single substitution may occur in multiple predicates.  Multiple 
facts (with the same non-key attribute values) may correspond to a single value substitution. 
 
Our definitions for different types of attribution correspond implicitly to different source 
granularities.  Comprehensive attribution gives the complete list of substitutions for defining 
one true interpretation of a CQ expression.  Source attribution identifies explicit tuples but 
only in relations from which free variables are drawn.  Relevant attribution defines sets of 
tuples for selected predicates in the expression. 
 

Example 4.18  Source granules and attribution substitutions 
Consider again DRC 2.1 from Section 3. 

DRC2.1 {HNAME | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧ 
hotels(HNAME, ROOMS, PRICE)} 

 
The comprehensive attribution for the expression is the set of pairs: 

{<f("Imperial"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "single"/ROOMS, 
34000/PRICE)>; 

<f("Imperial"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "double"/ROOMS, 
39000/PRICE) >; 

<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "single"/ROOMS, 
10000/PRICE) >; 

<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "double"/ROOMS, 
80000/PRICE) >} 

 
As illustrated above, projecting a substitution list onto a relational predicate in f returns a 
tuple that appears in the corresponding relation. 
 
By contrast, consider the relevant attribution: 

{<f("Imperial"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME)>; 
<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME) >} 

 
Projecting one of the  substitution lists onto the predicate hotels returns only the substitution 
"Imperial"/HNAME which we can apply as:  
 hotels "Imperial"/HNAME, PRICE, ROOMS) and corresponds to two tuples: 
("Imperial", "single", 34000) and ("Imperial, "double", 39000)   
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Example 4.18 suggests the ambiguity that can occur in attribution where multiple instances of 
a value in a source may contribute to a single answer.  The ambiguity also offers flexibility, 
however.  Individual variable substitutions indicate all occurrences of one or more variables 
in an expression whereas attributing with source tuples directs the attribution to identify 
explicit instances.  Note that our use of tuple-level source granularity is a proxy for 
identifying unique instances.  Leveraging functional dependencies may provide additional 
value here.  Buneman et al. also hints at the potential of using functional dependencies in 
attribution and addresses the issue of unique instances for their more general deterministic 
semistructured data model (Buneman 01).   
 
We note that an arbitrary granule defines a subset of values in a source (or result) relation.  
Specifying an arbitrary source granule does not imply that all valid substitutions for the 
expression are contained within the granule.  Likewise, not every substitution within a coarse 
granule of a CQ expression may give a true interpretation for the expression. 
 

Example 4.19  Interpreting source granules in attribution 
Consider a variant on DRC 2.1 from Section 3 where we ask for "single" rooms by the 
"Imperial Palace." 

DRC2.1' {HNAME | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧ 
hotels(HNAME, "single", PRICE)} 

 
The comprehensive substitutions are now: 

{<f("Imperial"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "single"/ROOMS, 
34000/PRICE)>; 

<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "single"/ROOMS, 
10000/PRICE) >} 

 
The corresponding source attribution is: 

{<f("Imperial"/HNAME, "Hibiya"/REGION, "single"/ROOMS, 34000/PRICE)>; 
<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "single"/ROOMS, 10000/PRICE) >}  

 
For coarse grained source attribution, we might identify a granule using only the source 
substitutions: 

{<f("Imperial"/HNAME)>; 
 <f("Dai-Ichi"/HNAME) >} 
 
Applied to the predicate hotels, we know that the substitution "Imperial"/HNAME corresponds to 
two tuples: 
("Imperial", "single", 34000) and ("Imperial, "double", 39000) 
 
However, the second of the two tuples does not produce a valid interpretation of the original 
query expression. 
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Definition 4.13  Source granularity 
A source granule on a relation, denoted by predicate p in a CQ expression E, is defined by a 
CQ expression on predicate p (i.e., it is a view).   
 

Observation 4.1  Defining a source granule in terms of substitutions 
Although an arbitrary source granule need not include all valid tuples for evaluating the truth 
of an expression, suppose that we have an expression E with attribution A.  If we define our 
source granules using the substitution a  A, we are assured that the source granules will 
always contain at least those tuples necessary to evaluate the query and produce the result 
corresponding to the attribution.   
 

Example 4.20  Defining a source granule in terms of substitutions 
Suppose that we had the attribution A for a query expression E with formula f.  f includes the 
relational predicate p such that for some substitution list a  A, ap  c1, …, cn and ci/Xi 
where Xi is a domain variable in p.  We can then define a source granule for p as a query 
expression Y1, … ,Ym| pY1,…, Ym where we substitute ci/Yj as appropriate (e.g. where Xi = 
Yj).  The source granule therefore describes p', a tighter bound on p that still is guaranteed to 
contain at least those tuples that satisfy the original expression E.   
 
Tuple-level granularity constitutes a value/variable substitution for every argument in a 
relational predicate and describes a specific instance of a source relation.  As noted above, 
although we define attribution in terms of substitutions, comprehensive and source attribution 
provide tuple-level granularity.  Assuming no functional dependencies, assigning a value to 
each domain variable in a relation uniquely identifies an instance of the relation.  Substitution-
level granularity, such as is used in our definition of relevant attribution, implicitly includes 
every tuple from each constituent base relation that includes a particular attribute-
value/domain variable substitution.  At the extreme, we can speak of a relation-level source 
granule as simply a relation name.  At the extreme, rather than attributing with specific 
substitutions, we can simply provide relation names as a proxy for all tuples in the 
corresponding relation.   
 
In general, tuple-level substitutions are the finest grained (most specific), and relation-level 
granules are the most coarse, across all attribution types.  This says that, where identifying 
specific values or instances of values is unimportant, we can always attribute with more 
general relations.  For purposes of intellectual property or remuneration, for example, 
knowing the relation names may be sufficient.  Likewise, for data quality purposes, knowing 
the relation may be enough to convey information about reputability.  By contrast, verifying 
or correcting anomalous values may require finer granularity.  
 
If we limit granules to those defined by substitutions, then we may make the following two 
observations about the relationship between different levels of source granularity  
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Observation 4.2  Generalizing from fine- to coarse-grained source granules 
Given a set of source [comprehensive | source | relevant] substitutions that constitute a 
particular degree of specificity, we may always compose a query over the source granules that 
will contain at least the original substitutions.  At the limit, we can always define a source 
granule that contains the original substitutions as the original base relation(s).   
 

Observation 4.3  Specializing from coarse- to fine-grained source granules 
Assuming a set of [comprehensive | source | relevant] substitutions that constitute a particular 
degree of specificity, we may always re-attribute the same query expression and query result 
and return source granules that contain  no more than the original set of substitutions.  At the 
limit, we know that the tightest bound is the set of exactly those comprehensive, source, or 
relevant tuples that evaluate the expression to true.   
 
Because we define granularity as a composed query on a source predicate p, we may also 
make the following observations about the implications of varying source granularity on other 
properties of attribution. 
 

Observation 4.4  Attribution composition is preserved 
We define source granules in terms of composed queries on the base sources.  Source 
granules therefore implicitly constitute IDB.  At the extremes, either a source granule contains 
exactly those tuples that evaluate the expression to true or it is the identity on the EDB (i.e. 
relation-level source granularity).  We already know that we can compose tuple-level 
substitutions.  At the opposite extreme, if we attribute with a source relation name rather than 
a set of source substitutions, we know that we can unfold by composing the relation names of 
the relations used to construct an IDB.   
 

Observation 4.5  Attribution of strictly equivalent queries is preserved 
For relevant attribution, this is again, trivial.  There is a unique minimal equivalent; regardless 
of the source granularity used, the relevant attribution is identical.  For comprehensive and 
source attribution, we may again rely upon the containment map between equivalent 
expressions.  Because the variables map to one another in the same predicates, we are assured 
that a source granule in one expression, defined as a query composed on a predicate, 
prescribes the same subset of base relation tuples in the equivalent expression.    
 

4.3.9 Result granularity 

Result granularity stems from two observations.  First, from the beginning, we intuited that 
users may have some interest in greater precision than simply attributing the result of a query.  
One tuple or even one value may raise particular interest.  We refer explicitly to result 
granularity in our definition of composition.  To compose an attribution recursively, we 
attribute substitutions in a predicate, not the entire relation represented by the predicate.    
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A second observation motivating result granularity stems from relational closure and the fact 
that relational query answers can serve as inputs to subsequent queries.  As a consequence, 
source granularity issues like "all occurrences of a value" or "the specific instance of a value" 
may apply equally to results as well as to sources. 
 

Example 4.21  Result granularity 
Consider a variant on DRC 2.1 from Section 3. 

DRC2.3 {HNAME, PRICE | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧ 
hotels(HNAME, ROOMS, PRICE)} 

 
We know that the result set includes the "Imperial, 34000" the "Dai-Ichi, 80000" and the 
"Dai-Ichi, 10000".  A user might only have an interest in the "Dai-Ichi" hotel rather than the 
"Imperial".  A different user might only be interested in the attribution for values of PRICE. 
  
 
The concept of result granules is consistent with our definitions of attribution, which refer to 
the substitutions that make the expression for the result true.  As with source granules, we can 
imagine attributing the specific instance of a value in the result rather than all instances of a 
value.  In Section 3 we saw how the projection of a non-key attribute from a base relation can 
result in multiple sources for the same value.   
 
Mindful that an IDB is simply the result of a query20, we follow our definition of source 
granules in defining result granules.  
 

Definition 4.14  Result granularity 
A granule of result r, defined by CQ expression E evaluated on database d is a result r' 
defined by a CQ expression E' composed on E for database d.21   
 

Observation 4.6  Attribution of a result tuple 
It follows from our definition of a result granule that the attribution of a specific tuple t in a 
result r, assuming no knowledge of functional dependencies, is then simply the attribution of 
composing a query on the result r for the specific tuple of interest.   
 
Moreover, because we define result granules using query composition, we are assured of 
 

 
20 The closure property of relational theory dictates that a query result (output) may in turn serve as a source 
(input) to some other expression (Maier 1983; Ullman 1988) 
21 As we enrich our query language, we will eventually define a source or result granule by composing any 
positive query on a source or result relation, respectively.   
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Observation 4.7  Attribution of strictly equivalent queries is preserved.  
We already know that the comprehensive and source attribution of strictly equivalent queries 
is equivalent.  Because this equivalence is preserved over composition, we conclude that the 
attribution of an arbitrary result granule is equivalent given equivalent CQ expressions.    
 
To define the relationship between result granules and source granules we offer the following 
observations. 
 

Observation 4.8  Attribution of a result tuple 
For relation-level source granules, the attribution of one tuple in the result of a CQ expression 
is the same as any other tuple in the same result.  This merely conforms to the intuition that in 
a CQ expression, every conjunct applies equally to every tuple.  
 

Observation 4.9  Comprehensive attribution of result values 
For comprehensive attribution, we may make the following stronger claims.  First, regardless 
of source granularity, we observe that the comprehensive attribution for one value in a result 
tuple is the same as that for every other value in the same tuple.  Second, if we limit ourselves 
relation-level source granules, the comprehensive attribution for a value in the result is the 
same as that for every other value in the result.    
 
The relationships between different granules has particular relevance for practical 
implementation, because it promises significant reductions in the amount of attribution 
metadata necessary to satisfy different user objectives.    

4.4 Adding theta comparisons 
We now move to refine our theory by extending the richness of the query language.  The 
introduction of theta comparisons challenges some of our earlier conclusions about attribution 
when limited to CQ expressions.  However, we verify that, for strictly equivalent queries, the 
comprehensive and source attribution of equivalent queries remains equivalent.  Moreover, 
we conclude that for all types of attribution, attribution composition continues to hold.   

4.4.1 Attribution concept 

The first language extension introduces arithmetic comparisons in atoms of the form (XY), 
(Xc), or (cX) where c is a constant and X and Y are either free or bound variables that are 
limited in the manner defined for the DRC above.  We refer to our extended queries as CQT 
expressions (or CQ expressions with theta comparisons).  The set of  operators are , , , 
, and .  For current purposes, we exclude explicit equality from the set of comparisons; 
explicit equality is incorporated into the language independently.22   
 

 
22 Recall that conjunctive queries already included a "safe" or limited version of equality-comparisons.  See note 
and text at 9. 
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Example 4.22  θ-comparison 
First, consider a variant on query Q2 of Section 3. 

E14   {HNAME, PRICE | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧ 
hotels(HNAME, "single", PRICE) ∧ PRICE  15000} 

 
Second, we present a more abstract case.   

E15  {W | p(V,W,X)  q(X,Y,Z) ∧ V > 10}   
 
Extending our definitions of attribution from CQ-expressions, we see that the introduction of 
comparisons does not introduce new relational predicates but may introduce new variables or 
perhaps constants for comparison.  To better understand the implications of these changes for 
our theory, we revisit our analysis for conjunctive queries beginning with types of attribution.   

4.4.2 Types of attribution 

We initially defined comprehensive attribution as a set of substitution lists for all variables in 
the expression applied to the formula for the expression itself such that the interpretation of 
the formula is true.  The definition for comprehensive attribution remains unchanged. 
 
While θ-comparisons may introduce new variables into the expressions, under the limitations 
of safety, every variable is still limited in the sense that it must appear in a (non-negated) 
relational predicate.  Consistent with Definition 4.9 on source attribution and Definition 4.13 
on source granularity, non-predicate atoms are not considered sources.    For E14 above, the 
arithmetic comparison is not considered a source for PRICE. 
 
Likewise, Definition 4.10 for relevant attribution remains unchanged.  The introduction of 
comparisons, however, does provide new alternatives for constraining the domain of a free 
variable.  In E15, V is relevant to W. 

4.4.3 Multiple derivations from different expressions, strict equivalence 

The same two categories for multiple derivations that we identified in CQ expressions apply 
when theta-comparisons are added.  Multiple derivations may stem from equivalent 
expressions or from multiple occurrences within a single expression.  For equivalent 
expressions on the same database, we now need to consider containment not only between 
predicates of equivalent expressions but between non-predicate atoms as well. 
 

Example 4.23  Multiple derivations 
E16  XY | pXYZ ∧ qUVW ∧ X ≠ U ∧ X  U 
E17  XY | pXYZ ∧ qUVW ∧ X  U   

 
The problem is tied to the introduction of new atoms in the form of theta comparison.  The 
relationship between arithmetic comparisons of equivalent queries is not always clear as 
indicated in the following example from Ullman (1989). 
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Example 4.24  Interactions between arithmetic comparisons and relational predicates 

E18  XY | pXYZ ∧ qUV ∧ U  V 
E19  XY | pXYZ ∧ qUV ∧ qVU   

 
Fortunately, we do know that a containment mapping does hold between the relational 
predicates in equivalent CQT expressions (Ullman 1989).  Furthermore, the property of safety 
guarantees that all domain variables are captured in the containment mapping.   

Theorem 4.3 Attribution equivalence 
If E1 and E2 are equivalent CQT expressions, then their [comprehensive | source] attributions, 
A1 and A2, are equivalent.  
 

Lemma 4.7  Comprehensive attributions of equivalent CQT expressions are equivalent.   
 
This is trivially true by the definition of equivalence between E1 and E2.  We know that there 
is a containment map between all predicates representing relations of equivalent CQT 
expressions.  Moreover, because of safety, we know that the built-in predicates use only 
variables that are bound in (and hence captured by the containment mapping between) 
relational atoms.   
 

Lemma 4.8  Source attributions of equivalent CQT expressions are equivalent.   
 
Recall that source attribution is defined in terms of the free variables of a CQT expression.  
Because the queries are equivalent, we know that the two expressions define the same 
relation.  Therefore, the containment mapping between relational predicates of equivalent 
expressions must take relational predicates containing free variables in E1 to the 
corresponding relational predicates in E2 and vice versa.   
 
From Lemmas 4.7 and 4.8, we conclude that the comprehensive and source attributions of 
equivalent queries is equivalent.  

4.4.4 Multiple derivations from different expressions, composition 

Composition, our reference for equivalent expressions defined on different databases, does 
not apply to non-predicate atoms, because theta-comparisons are not defined by expressions.  
We will, however, want to consider, the effect of non-predicate atoms on our definition for 
the attribution of composed expressions and whether the theorem for the recursive 
composition of attribution holds over theta-comparisons. 
 
Again, we rely upon the fact that, though there is no unique, minimal query, there remains a 
containment mapping between the predicates in equivalent CQtheta queries.   
 
What is the definition of a composed query (e.g. you can substitute expressions with the theta 
operator in it) and algorithm … do you need to adjust either the drill down or the way you 
reconstruct the attribution as you back out?   
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Consequently, the introduction of inequality comparisons does not change the ability to 
compute attribution in a recursive fashion for predicates composed on other predicates.   
 

Theorem 4.4  Composition holds for CQT expressions 
Attribution composition computes the attribution of a composed CQT expression. 
 
Assume without loss of generality the following CQT expressions E1, E2, E3 defined by the 
formulas f, g, and h respectively s.t. 
E1  f  p1  p2  …  pn  q where q is the only IDB in E1 
E2  q  g   r1  r2  …  rm where ri  d 
E3  h   p1  p2  …  pn  r1  r2  …  rm 
Again, we assume that variables in formula g of E2 are renamed and reordered appropriately.  
The p's and r's may now include theta comparisons in addition to relational predicates with 
constants.  We further assume, for convenience, that obvious redundancies are reduced (e.g. 
X  10 ∧ X  5 reduces to simply X  5) 
 
Given E1 defined on d' d  q and r, the result of evaluating E1 on d', attribution 
composition computes the [comprehensive | source | relevant] attribution of result r in terms 
of d as defined by attrr, E3, d. 
 

Lemma 4.9  a3,h  A3 is a comprehensive attribution for E3 if and only if a3,h  
Compose A1,f. 
 
This case is no different than for CQ expressions.  That variables may now also appear in 
arithmetic comparisons does not affect their substitutions which are bound by the relational 
predicates. 
 

Lemma 4.10  a3,h  A3 is a source attribution for E3 if and only if a3,h  Compose 
A1,f. 
 
A1 is the source attribution for E1.  Again, this follows the parallel for CQ expressions.  
Source attribution is defined by the relational predicates in which the free variables appear. 
 

Lemma 4.11  a3,h  A3 is a relevant attribution for E3 if and only if a3,h  Compose 
A1,f. 
 
A1 is a relevant attribution for E1.  As with CQ expressions, we need to verify that 
relevantE3  relevantE1  relevantE2' where relevantE2'  relevantE2 and 
relevantE refers to the relevant variables in E and likewise for freeE; boundE.  In other 
words, we want to verify that the relevant variables in E3 are made up of the relevant variables 

 



70 
 
 
   
in E1 and the relevant variables in E2.  Because E3 is the unification of E1 and E2, however, we 
avoid the problem observed in strict equivalence of identifying interactions between relational 
predicates and arithmetic comparisons.  We form relevantE2' as we formed A2' previously.  
We attribute only the relevant variables in q on the expression E2.   
 
We note that arithmetic comparisons may now constrain relational predicates containing free 
variables or relational predicates joined to predicates containing free variables.  In addition, 
arithmetic comparisons may join relational predicates.  However, comparisons in the rj's of E3 
appear in E2 and comparisons in the pi's of E3 appear in E1.  Furthermore, a comparison in the 
rj's cannot include variables from the pi's and vice versa, unless those variables appear in the 
IDB q of E1.  With these observations in mind, we proceed as in the case for CQ expressions. 
 
Case→ 
Pick some relevant attribution a3,h  A3 and split it:  Project a3 onto f and g.   
We need to establish that a3f  a1,f  A1 and a3g  a2,g  A2'  A2 where A2' as the 
attribution for the tuple defined by a1  a2, a tuple in q. 
 
A substitution cX is in a substitution list for a3 because either X is free in E3 or c/X joins two 
relational predicates, at least one of which is recursively joined to a relational predicate 
containing a free variable or is a constant from the original query expression that appears in a 
relational predicate recursively joined to a predicate containing a free variable of E3. 
 
Case 1. X  relevantE3 and X  freeE3.  FreeE3  X  freeE1  relevantE1 by 
definition of the equivalence of E1 and E3.  For X  freeE3  Y  freeE2, Y must also be 
free in E1 because E2 is q in E1 (e.g. Y  freeE2  Y  freeE1).  Consequently, at least for 
the relevant variables in E2 that are free, we know a2  A2'  A2 
 
Case 2.  X  relevantE3 joins relational predicates to a recursively joined set of relational 
predicates or X constrains one predicate in a recursively joined set of relational predicates 
(e.g. X is a constant in the formula or in an arithmetic comparison).  All such predicates are in 
the set pi and at least one joined predicate contains a free variable in h.  Then X is relevant in 
E1 so a3f  a1 for a1,f  A1. 
 
Case 3.  X  relevantE3 is like Case 2 except all such predicates are in the set rj.  Then X is 
relevant in E2 so a3g  a2,g  A2'  A2 where A2' as the attribution for the tuple defined by 
a1  a2, a tuple in q.  (recall that g  q in E1). 
 
Case 4.  X  relevantE3 appears in both some predicate pi and some predicate rj.  Then X 
must appear in predicate q of E1 (X is not free in E1 so it must be bound in E1 and appear in q 
in order to appear in both pi and rj in E3).  Therefore X is relevant in E1 so a3f  a1 for a1,f 
 A1. 
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It is possible that a3g is empty, which occurs when we consider a Cartesian Product and 
then do not restrict variables between arguments to the Cartesian Product.  In this case, 
attribution relevance is trivially true in the pi's. 
 
From here, we do the same unfolding as before and conclude that Compose returns a1  a2h 
which is a3.  
 
Case  
Pick some random substitution list a1  a2 as before and verify that a1  a2,h  A3. 
Proof by contradiction. 
Suppose not.  Then there must be a substitution cX  a1  a2, cX  a3, or cY  a3, cY  a1  
a2. 
 
Case 1.  Pick Y.  If Y is relevant in E3, then Y must constrain the free variables in h in some 
way.  
If Y is a free variable, then c Y  a1, a contradiction.   
If Y constrains a predicate containing a free variable through some recursively joined set of 
predicates amongst the pi's, then cY  a1, a contradiction.   
If Y constrains a predicate containing a free variable through some recursively joined set of 
predicates amongst the rj's  and is a1  a2 as assumed above, then cY  a2, a contradiction. 
If Y is relevant and appears in both some predicate p and some predicate r then cY  a1, a 
contradiction (see Case 4 for the  direction). 
Therefore, by contradiction, we conclude that there is no cY  a3, cY   a1  a2. 
 
Case 2.  Pick X.   
If cX  a1 because it is a free variable in E1, then by definition, cX  a3, a contradiction. 
If cX  a1 because it constrains a free variable through predicates pi, then cX  a3, a 
contradiction. 
If c/X  a1 and appears in both in q's and p's, then cX  a3, a contradiction. 
Now we need to be careful.  Remember that a2 is selected from attributing a1g.  It is 
possible for a1g   as in the case of Cartesian Product.  attr a1g, E2, d' is non-empty 
only when there is a relevant variable in q.   
If cX  a2 because it is free in E2 and free in E1, then we know cX  a3, a contradiction. 
If cX  a2 because it is free in E2 and bound and relevant in E1, then we know cX  a3, a 
contradiction. 
If cX  a2 because it is bound in E2, occurs among the predicates rj and constraints a free 
variable in E2 that is relevant in E1 (through predicate q in E1), then we know cX  a3, a 
contradiction.  
 
Therefore, we conclude that attribution composition computes the attribution of a composed 
CQT expression.  
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4.5 Adding explicit equality 
Adding explicit equality to CQT expressions challenges our intuitions about the attribution of 
equivalent queries, but not necessarily in unexpected ways.  The source of a variable is 
determined syntactically by occurrences of that variable in the expression.  Logically, we say 
that the source of a variable is the predicate by which we limit (for purposes of safety) the 
values of a particular domain.  Example 3.12 in Section 3 contrasted natural joins and explicit 
equality.  We present a more abstract example here. 

Example 4.25 Explicit equality 
 E20  XY | pXYZ ∧  qUVW   X = U 
  E21  XY | pXYZ ∧  qXVW 
 E22  XZ | pUWWX ∧ X  U 
 
In E21, both predicates p and q may be said to limit values of X for purposes of safety.  In E20, 
predicate q does limit values of X, but only indirectly through an explicit comparison to U.  In 
E22, note that all variables are limited in the same predicate.  More particularly, from the 
perspective of equivalence the examples introduce a slight irregularity into the containment 
map.  We either implicitly push all equalities into the predicates (for example, eliminating 
variable U as in E21) or rename all variables so that no variable name appears more than once 
as in E20; all equalities are than explicit. Without the change, the containment map takes X and 
U in E20 to X in E21.  Mapping from E21 to E20, however is less clear.  To what variable in E20 do 
we map E21    
 
Rather than resolving the problem of explicit equality by either pushing equalities into 
relational predicates or renaming all variables, we suggest that the syntactic difference may 
prove useful for purposes of attribution.  Under this interpretation, different relations that 
include the same domain may use the same domain variable to indicate multiple sources for 
that domain.  In this way, we use the introduction of explicit equality to help differentiate 
attribution.      

Example 4.26  Source attribution and explicit equality 
 E23  {HNAME | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) } 

E24  HNAME | hostels(HNAME, PRICE, STATION) ∧ sites("Nakamise Dorsi", REGION) ∧ 
REGION  STATION} 

 
E23, adapted from Q2 in Section 3, attempts to locate hotels by the "Imperial Palace".  It does so 
by matching the REGION in which the Imperial Palace is located, to the REGION in which 
individual hotels are located.  Here, the two relations draw from the same domain so both 
relational predicates are considered sources for values of REGION.   
 
E24, adapted from Q5 in Section 3, attempts to locate hostels by "Nakamise Dorsi".  However, 
the relation for hostels does not know about the domain of REGIONs.  Rather, the query uses 
the knowledge that many train stations are named for the region in which they reside.  As a 
consequence, we find hostels by equating values from the REGION domain with values from 
the STATION domain.    
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Associating attribution with the syntax of a calculus expression allows us to distinguish 
between the concept of the natural join and the theta join (Ullman 1988).  For purposes of 
attribution, in the natural join, two relations implicitly serve as sources for the same attribute 
domain.  In theta-join, two attribute values, possibly from dissimilar domains, are explicitly 
compared. 
 
Using the syntax of explicit equality to distinguish between different sources, however, 
clearly compromises the equivalence of comprehensive, source, and relevant attributions of 
strictly equivalent queries.  We therefore offer  
 
Observation 4.10  Attribution of strictly equivalent CQT+ expressions 
Though E1 and E2 are equivalent CQT+ expressions (CQT expressions with explicit equality), 
then their [comprehensive | source | relevant] attributions, A1 and A2, are not necessarily 
equivalent.  To see this, we need only recognize that the source attributions of equivalent 
expressions no longer necessarily map to one another as in E23 and E24 above.  Comprehensive 
and relevant attribution suffer from the same issue.  Although predicates map, there is not 
necessarily a consistent way of mapping domain variables between equivalent expressions.   

4.6 Adding union   
In this next extension, we consider the addition of union into the query language.  Unlike 
earlier extensions, union allows us to introduce and eliminate predicates from equivalent 
expressions.  As a result, we first redefine our concept of attribution to account for union.  We 
conclude that for the different types of attribution, the attribution of strictly equivalent queries 
are no longer necessarily equivalent.  With some minor adjustments to the algorithm, 
however, we can show that attribution does continue to compose.   

4.6.1 Attribution concept 

Much as with the introduction of θ-comparison, the DRC imposes safety constraints on our 
introduction of disjunction in the language to support the semantics of algebraic union.  In 
particular, the disjunction of two predicates must have the same set of arguments much as the 
algebraic condition on union requires union compatibility (Ullman 1988).  As a further 
simplification for defining attribution in the presence of union, we assume prenex, disjunctive 
normal form (DNF) as the canonical form for all CQTU expressions.  We know that we can 
transform a safe calculus expression into this form.  A CQTU query therefore has the form: 
 
 {X1,…,Xn | f1(X1,…,Xn) ∨…∨ fm(X1,… Xn)} 
 
Every disjunct fj is a CQT query that alone may make the expression true.  In light of 
disjunction, we therefore generalize our original intuition for attribution.  Attribute each 
disjunct as an independent CQT+ query.   
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Definition 4.15 Attribution of the union of CQT+ expressions 
The [comprehensive | source | relevant ] attribution of the disjunction of CQT+ expressions is 
the union of the corresponding attributions for each constituent disjunct.   
 

Example 4.27 Attribution of the union of CQT+ expressions 
 E25 = A | pABC  qABC 
The [comprehensive | source | relevant] attribution for the expression is therefore the 
attribution of A | pABC combined with the attribution of A | qABC  
 
We actually saw several examples of unions from the examples in Section 3 beginning with 
Example 3.6.  In the case of the union of CQ expressions, we know that there is a unique 
minimal equivalent (Ullman 1989).  We find the unique minimal equivalent by minimizing 
each disjunct independently and then removing disjuncts that are contained by other disjuncts 
in the same expression.  Under these limited circumstances, then, we can certainly argue that, 
for the unique minimal expression, the comprehensive, source, and relevant attributions are 
the same.  For the general case of attribution equivalence of strictly equivalent queries, 
however, attribution equivalence breaks down with the introduction of union.   

4.6.2 Multiple derivations – strict equivalence 

For attribution, which is based upon substitutions, the problem posed by the introduction of 
union is immediately clear.  Disjunction allows the introduction of new predicates, hence new 
variables and new substitutions.  The containment condition for equivalent queries and the 
attendant mapping between attributions for equivalent expressions therefore breaks down.  
Example 3.7 of Section 3 offered one example of how attribution breaks down under union.  
Here, we consider a more abstract case.  Consider the following equivalent expressions. 
 

Example 4.28  Attribution of strictly equivalent expressions with disjunction 
 E26  A | pABC  pABC ∧ qABC 
 E27  {A | pABC  pABC ∧ C  10 
 E28  A | pABC 
 
The three queries are equivalent because the second disjunct in E26 and E27 is contained by the 
first disjunct.   E26 and E27 therefore reduce to E26.  However, the comprehensive attribution for 
the first expression includes substitutions in the predicate q which do not map to the other 
equivalent expressions.  Perhaps more obvious, we may regard q as a source for the attribute 
values of A in E26 although neither of the equivalent expressions reference q.  For relevant 
attribution, we see that a variable, relevant in one disjunct, can prove irrelevant in a disjunct 
of the same expression or to an equivalent expression.  In E27, the attribute variable C is 
relevant in the second disjunct but neither in the first disjunct of the same expression nor in 
the third expression.   
 
That attribution breaks down under union corresponds to our intuitions about attribution.  
Attribution can provide corroborating information about the quality of a particular query 
result or the values in a particular result.  Though redundant, attribution may also provide 
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references to non-redundant ancillary information.  Finally, from an intellectual property 
perspective, whether a source proves redundant or not, proper acknowledgement and perhaps 
remuneration is only appropriate.     

4.6.3 Multiple derivations - composition 

While attribution equivalence breaks down for strictly equivalent queries, we see that 
attribution continues to compose.  As observed earlier for the relevant attribution of CQT 
expressions, composition assumes that we begin with a single formula and unfold the IDB.  
Composition does not reduce redundant disjuncts.  We reason that we may unfold redundant 
disjuncts as easily as any other disjunct in the disjunction of CQT+ expressions (assuming also 
the appropriate renaming and reordering to avoid conflict in multiple occurrences of the same 
predicate or domain variable in the same disjunct).   
 
We first update our algorithm to account for disjunctions.  Then, we prove that the algorithm 
holds for the introduction of safe disjunction assuming that queries are expressed in canonical 
form.   
 
To update the algorithm, we must first recall that the attribution of the expression is now the 
union of the attributions of each disjunct.  We assume that the definition of any IDB may also 
include disjunction but that all IDB definitions are expressed in canonical form as well (i.e. 
the disjunction of conjuncts).  The accumulation of disjuncts must therefore distribute in the 
original expression.   
 

Example 4.29 Attribution of a composed expression with nested disjunction 
 E29  A | pABD  qACE 
 E30  qACE  {ACE | rABC  sCDE  tACE 
 E31

  A | pABD  rABC  sCDE  tACE 
E21 is an expression with an IDB in the second disjunct.  The IDB, which we label E30, itself 
contains a disjunction.  Unifying the IDB gives E31.  Note the necessary variable renaming.  
Attribution is defined in terms of the base relations.  As before, we want to discover whether 
we may iteratively attribute E29 and E30 in lieu of unifying the expression a priori. 
 

Algorithm 4.2 Attribution composition for CQT+U expressions 
 
Compose (A, s) where A is the attribution for s, a disjunction of CQT+ sub-formulas, each of 
which may itself be a disjunction of CQT+ sub-formulas. 
 
Compose (A, s)  (a) 
if s  ∅  then return   (b) 
else pick fi a disjunct in s  f1  f2  … fx (c) 
 s   f1  f2 … fi-1  fi+1  …  fx (d) 
 A'  a,f | a,f  A and f = fi (e) 
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 Compose (A, s)  ComposeD A',fI (f) 
 
ComposeD A, f  (1) 
if f has no q's then return A (2) 
else pick qi, an IDB in f (3) 
 f  p1  p2  …  qi-1  qi+1…qm (4) 
 ComposeD Unfold A, qi, f  (5) 
 
Unfold A, q  (6) 
if A is ∅ then return   (7) 
else pick a,f  A (8) 
 let g be the formula for IDB E representing q (9) 
 let u be the unifier for h  unifyf,g (10) 
 let E' be E as defined by g with the renaming of u (11) 
 B = attr E' aq/x , d' (12) 
 Rewrite B, ua  aq, h  Unfold A  a,f, q  (13) 
 
Rewrite B, a, h  (14) 
if B is ∅ then return   (15) 
else pick b,g  B (16) 
 a  b,h  Rewrite B  b,g, a, h  (17)   
 
This is the same algorithm as that presented for CQ expressions with the exception being lines 
(a) – (f).  What was formerly called "Compose" we renamed "Compose Disjunct" or 
"ComposeD."  As declared in line (a), "Compose" is now a function that recurses down the 
disjuncts in the formula for the query expression.  We call "ComposeD" on each disjunct as if 
it were an isolated CQT+ query.  The attribution of the expression is then the union of the 
attributions from calling "ComposeD" on each disjunct.  Because each substituion is defined 
for only one disjunct in the query expression, line  (e) ensures that we ComposeD on each 
disjunct with only those substitutions applicable to a respective disjunct.  We then propose: 
 

Theorem 4.5  Attribution composition 
Our algorithm for attribution composition computes the attribution for the union of composed 
CQT+ expressions.  Assume the following CQT+ expressions E1, E2, E3 defined by the 
formulas f, g, and h respectively as: 
 
E1  f  p1  p2  …  pn  q  t1  t2  …  where q is the only IDB in E1 
E2  q  g  r1  r2  …  rm  s1  s2  …  so where ri, si  d 
E3  h  p1  …  pn  r1  …  rm  p1  …  pn  s1  …  so  t1  …  
 
Furthermore, we know that  r1  r2  …  rm and  s1  s2  …  so are union compatible 
with schema defined by the IDB  q.   
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Given E1 defined on d' d  q and r, the result of evaluating E1 on d', attribution 
composition computes the [comprehensive | source | relevant] attribution of result r in terms 
of d as defined by attrr, E3, d. 
 

Lemma 4.12  a3,hi  A3 is a comprehensive attribution for E3 if and only if a3,hi  
Compose A1,f. 
 
Case  
Pick a random substitution a3,hi  A3.  Consider the following possibilities: 
 hi  p1  …  pn  r1  …  rm 
 hi  p1  …  pn  s1  …  so 
 hi  t1  …  
 
If hi  t1  …  then we know that a3,hi  a1,hi  A1 because hi is a disjunct in the formula 
for E1 (see Algorithm 4.2 line (c)).  For A' on fi  x1 … xn  hi we know that Ihia3/x  true 
so Ifia3/x  true.  There are no IDB in fi so a3,hi  ComposeDA1,fi  ComposeA1, f. 
 
If hi  p1  …  pn  r1  …  rm in A3 then we can say that a3p1  …  pn  r1  …  rm, 
p1  …  pn  r1  …  rm  a1, p1  …  pn  r1  …  rm  A1 because i, 
Ipia3pi/x  true and j, Irja3rj/x  true and q is defined by the formula g.  Or, to be 
more precise, r1  …  rm is a disjunct of g that makes g true.  Similarly, we know that a3r1 
… rm, g  a2r1 … rm  A2'  A2 (where A2' is the attribution for tuple a1  a2, a tuple in q.  
Compose calls ComposeD on fi  p1 … q with A'  a1, fi in line (f) of Algorithm 4.2.  
ComposeD passes A' to Unfold.  Unfold calls attra3q, E2, d' which we already know is 
A2'  A2.  Unfold is applied to every value of A' so certainly it calls itself on a1 which we have 
already seen makes E1 true.  Unfold calls Rewrite with a1 and A2' so certainly it is applied to 
a2.  But Rewrite is called on hi, the unification of p1… q and g and returns a1  a2 which is 
a3. 
 
If hi  p1  …  pn  s1  …  so then we apply the same analysis as before, knowing that hi 
 s1  …  so is a disjunct of g that also makes q true.  As a consequence, it produces A2"  
A2 from attra3q, E2, d' and we arrive at the same conclusion as before.   
 
Case  
If unifyf,g results in the disjuncts: 
 p1  …  pn  r1  …  rm, 
 p1  …  pn  s1  …  so or  
 t1  …  
does every a1, t1  …  or (a1  a2, p1  …  pn  r1  …  rm or (a1  a2, p1  …  pn  s1  
…  so appear as a substitution in A3?  Pick some arbitrary a1 from a pair in A1.  If you picked 
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some a1, t1  …  then we know that a1 makes disjunct t1  …  true.  But because t is also a 
disjunct of E3, if a1 makes the disjunct true, then certainly it makes E3 true therefore a1, t1  
…   A3. 
 
Now if the pair a1  A1 is for disjunct p1  p2  …  pn  q we want to pick an a2 but not an 
arbitrary a2.  From Algorithm 4.2, Compose creates A2' from attr a1g, E2, d'.  So pick 
any a2 from a pair  A2'.  We know a1  a2 paired with p1  …  pn  r1  …  rm  p1  … 
 pn  s1  …  so appears in A3 if it makes E3 true.  i, Ipia3pi/x  true and j, either 
Irja3rj/x  true or Isja3sj/x  true.  But is either disjunct true at the same time that 
the p's are true?  Because we know that a2 is from a pair in A2' by construction, we know that 
a2 makes E2 true.  Therefore, we know that a1  a2, p1  …  pn  r1  …  rm  p1  …  
pn  s1  …  so  A3.  
 

Lemma 4.13 a3,hi  A3 is a source attribution for E3 if and only if a3,hi  Compose 
A1,f where A1 is the source attribution for E1. 
 
Case  
Pick a random substitution a3,hi  A3.  Consider the following possibilities: 
 hi  p1  …  pn  r1  …  rm 
 hi  p1  …  pn  s1  …  so 
 hi  t1  …  
 
Regardless of which alternative is chosen, the source attribution consists of the free variables 
(and the accompanying variables in the associated relational predicate(s)). 
 
If hi  t1  …  then we know then we know that a3t1  … , t1  …   A1 because a3 
identifies the disjunct t1  …  of E3.  But t1  …  is also a disjunct of E1, so this holds 
trivially.  Note that there is no IDB in t1  …  so Algorithm 4.2 line (2) returns the original 
source attribution for the disjunct t1  …  for ComposeA1, t1  … . 
 
If hi  p1  …  pn  r1  …  rm then we observe that a3p1  …  pn  q, p1  …  pn  
q is a pair  A1 because for predicates pi, E1  E3 and for predicate q  E1, q is defined in 
terms of the free variables of E2 which is unfolded in a3.  Similarly, we can say that a3 r1  
…  rm , q  a2,g  A2'  A2 where A2' is the source attribution of  a1  a2, a tuple of q.  
Compose passes f'  p1  …  pn  q to ComposeD with source attribution A' defined in 
terms of the p's and q's.  ComposeD passes A' to Unfold with q  r1  r2  …  rm  s1  
s2  …  so.  Unfold is called on every source substitution in A' so certainly it is called on a1.  
Unfold calls for attra1g, E2, d' which we know includes the source substitutions A2'  
A2 where the formula in the attribution pair is the disjunct r1  r2  …  rm.  Rewrite is 
called on every element of A2' so eventually it is called on a2.  But Rewrite pairs a1  a2 with 
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hi a disjunct p1  …  pn  r1  …  rm of unifyf,g in line (10) of Algorithm 4.2.  This, 
then, is just a3.  The same reasoning applies for the disjunct s1  s2  …  so from the 
attribution in Unfold.   
 
Case  
If unifyf,g results in the disjuncts: 
 p1  …  pn  r1  …  rm, 
 p1  …  pn  s1  …  so or  
 t1  …  
does every a1, t1  …  or (a1  a2, p1  …  pn  r1  …  rm or (a1  a2, p1  …  pn  s1  
…  so appear as a substitution in A3?  For pairs a1, t1  …  then we know that a1 is a 
source substitution t1  … .  But because t is also a disjunct of E3, if a1 is a valid source 
substitution for E1, then certainly it is likewise for E3 therefore a1, t1  …   A3. 
 
For pairs involving an a1  a2 pick some arbitrary a1 from a pair in A1.  Now pick an a2 from 
A2'  A2 generated by the attra1g, E2, d' in Unfold.  This will give a substitution a2 either 
in r1  r2  …  rm or s1  s2  …  so.  We know that a1  a2 paired with p1  …  pn  
r1  …  rm or p1  …  pn  s1  …  so makes A3 true if it makes E3 true.  And we know 
a1 makes the p's true just as a2 makes the r's or the s's true by construction.  Therefore, we 
know (a1  a2, p1  …  pn  r1  …  rm  A3 and (a1  a2, (p1  …  pn  s1  …  so  
A3   
 

Lemma 4.14 a3,h  A3 is a relevant attribution for E3 if and only if a3,h  Compose 
A1,f. 
Where A1 is a relevant attribution for E1.  As in prior cases, we need to verify that 
relevantE3  relevantE1  relevantE2' where relevantE2'  relevantE2 and 
relevantE refers to the relevant variables in E and likewise for freeE; boundE.  We form 
relevantE2' as we formed A2' previously.  We attribute only the relevant variables in q on the 
expression E2.  With disjunction, there is the additional complexity of tracking relevance in 
each disjunct. 
 
Case  
Pick a random substitution a3,hi  A3.  Consider the following possibilities: 
 hi  p1  …  pn  r1  …  rm 
 hi  p1  …  pn  s1  …  so 
 hi  t1  …  
 
Suppose hi  t1  … .  We also know that t1  …  is a disjunct of E1 which means that a3, 
t1  …    A1'  A1.  Because there are no IDB in this disjunct, we know that the call to 
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ComposeD on t1  …  with A1'  A for pairs a3, t1  …  simply returns A1'.  So we 
conclude a3, t1  …   ComposeA1, t1  … . 
  
If hi  p1  …  pn  r1  …  rm then we consider the same cases as for relevance in CQ.  
However, we must now consider the cases for each disjunct. 
 
Case 1.  X  relevantp1  …  pn  r1  …  rm and X  free p1  …  pn  r1  …  rm .  
We know that freep1  …  pn  r1  …  rm  X  freeE1  relevantE1 by definition of 
the equivalence of p1  …  pn  q and hi  p1  …  pn  r1  …  rm.  Consequently, at 
least for relevant variables in the disjunct p1  …  pn  r1  …  rm that are free, we know 
a2  A2'  A2.   
 
Case 2.  X  relevantp1  …  pn  r1  …  rm joins relational predicates to a recursively 
joined set of relational predicates or X constrains one predicate in a recursively joined set of 
relational predicates (e.g. X is a constant or X appears multiple times in a single relation).  All 
such predicates are in the set pi and at least one joined predicate contains a free variable in hi 
 p1  …  pn  r1  …  rm.  Then X is relevant in E1 so a3f  a1 for a1, p1  …  pn  q 
 A1. 
 
Case 3.  X  relevantp1  …  pn  r1  …  rm as in Case 3 of Lemma 4.6 where the X's 
appear only in the rj's.  Then X  relevantr1  …  rm which implies X  relevantE2 so 
a3g  a2,g  A2'  A2 where A2' as the attribution for the tuple defined by a1  a2, a tuple 
in q.  Of course A2' may also include some substitutions from other disjuncts in the definition 
of q (e.g. s1  …  so. 
 
Case 4.  X  relevantp1  …  pn  r1  …  rm appears in both some predicate pi and some 
predicate rj.  Then X must appear in predicate q of E1 (X is not free in E1 so it must be bound 
in E1 and appear in q in order to appear in both pi and rj in E3).  Therefore X is relevant in E1 
so a3f  a1 for a1, p1  …  pn  q  A1. 
 
It is possible that a3g is empty, which occurs when we consider a Cartesian Product and 
then do not restrict variables between arguments to the Cartesian Product (i.e. no  
comparisons).  In this case, attribution relevance is trivially true in the pi's. 
 
From here, we do the same unfolding as before and conclude that Compose returns a1  
a2,p1  …  pn  r1  …  rm  A3.  We can do the same analysis for hi  p1  …  pn  s1 
 …  so or any other disjunct of q. 
 
Case  
Pick some random substitution from Compose:  a1, t1  …  or a1  a2, f' where f' is a 
disjunction p1  …  pn  r1  …  rm or p1  …  pn  s1  …  so and verify that it 
appears in A3.   
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Proof by contradiction. 
Suppose not.  Then there must be a substitution: 
 cX  a1 where a1, t1  …   A3 or some  
 cX  a1  a2 where a1  a2, p1  …  pn  r1  …  rm   A3 or some 
 cX  a1  a2 where a1  a2, p1  …  pn  s1  …  so   A3. 
 
But we know t1  …  is a disjunct in E3 so if a1 is relevant in the t's for E1 then it must still 
be relevant in the same disjunct of E3.  A contradiction. 
 
If c/X  a1 because it is free in E1 then by definition, c/X  a3, a contradiction. 
If c/X  a1 because it constrains a free variable through the p's then c/X  a3. 
If c/X appears in both the p's and predicate q, then c/X  a3 by definition. 
Now we need to be careful.  Remember that a2 is selected from attributing a1g.  It is 
possible for a1g   as in the case of Cartesian Product.  attr a1g, E2, d' is non-empty 
only when there is a relevant variable in q.  Recall that E2 is in DNF so the free variables are 
the same in each disjunct of E2. 
If cX  a2 because it is free in E2 and free in E1, then we know cX  a3, a contradiction. 
If cX  a2 because it is free in E2 and bound and relevant in E1, then we know cX  a3, a 
contradiction. 
If cX  a2 because it is bound in E2, occurs among the predicates rj of a disjunct in E2 
(similarly for the other disjuncts of E2 i.e. sj) and constraints a free variable in E2 that is 
relevant in E1 (through predicate q in E1), then we know cX  a3, a contradiction.  
 
Therefore, we conclude that attribution composition computes the attribution of a composed 
expression.  
 
By representing our expressions in DNF, we can treat each disjunct independently and 
compose in a depth first manner across all disjuncts and all IDB.  As before, we can easily 
imagine unfolding successive levels of IDB. 

4.7 Adding negation 
Negation, in general, poses problems for query evaluation (Abiteboul, Hull, and Vianu 1995).  
Likewise, negation presents problems for attribution.  From Section 3, the intuition behind 
attribution for negation corresponds to the logical interpretation of safe expression.  We can 
confirm the truth of a negated assertion (fact in the database) by verifying that the (positive) 
assertion itself does not exist in the database.  Unfortunately, this intuition breaks down under 
composition of queries with negation.  We identify a subset of queries with negation under 
which composition is preserved. 
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4.7.1 Attribution concept 

As indicated in Section 3, to verify that the (positive) assertion does not exist, the attribution 
must therefore consider (include) every true substitution for the negated sub-formula.  We 
first illustrated this intuition in Example 3.13 and Example 3.14 of Section 3.  
 

Example 4.30  Attribution for an expression with negation 
 E32  ABC | rABC ∧ ¬ sABC 
 
To verify that a substitution <1/A, 2/B, 3/C> is in the attribution for the expression, we must not 
only verify that Ir1/A, 2/B, 3/C  true but also that for every substitution <x/A, y/B, z/C> such 
that Is x/A, y/B, z/C   true, x  1 or y  2 or z  3.   
 
Moreover, if there is more than one negated predicate, we need to confirm that a valid 
substitution for the expression does not make any of the negated predicates true.  We would 
do so by confirming that a substitution for the formula does not include any true substitution 
for any negated predicate. 

4.7.2 Types of attribution 

To formalize attribution in the context of negation, we introduce a few additional 
assumptions.  First, using standard rules, all negations are pushed down to the level of 
individual predicates.  The negation of an arithmetic comparison is simply expressed as its 
logical converse (e.g.  X  Y  X  Y ).  Second, formulas continue to be flattened as the 
disjunction of conjuncts where all conjuncts are either positive or negative predicates or theta 
comparisons.  Within each disjunct, negated predicates are limited for safety as per the 
syntactic rules described earlier.  A formula is therefore a disjunction of conjuncts of the 
form: 
 
p1  p2  …  pn   q1   q2  …   qm  t1  …  to 
 
where the p's are non-negated predicates, the q's are negated predicates, and the t's are theta 
comparisons.  For safety, for each j in m, every argument in qj must also appear in some 
predicate pi or bound to a constant.  Based upon these extensions to address negation, we can 
now redefine what we mean by attribution. 
 

Definition 4.16  Comprehensive attribution 
The comprehensive attribution for an expression in DNF, possibly with negated predicates, is 
the union of the comprehensive attributions for each disjunct, f.  The comprehensive 
attribution for each disjunct is a set of triples <a, n, f> where a is a substitution for which the 
non-negated predicates pi and -comparisons to in disjunct f evaluate to true and n is itself a 
set of substitutions <b, m, qj >.  The set n ranges over all of the negated predicates qj and 
includes every substitution b that makes qj true.  Assuming that there is no b that agrees in the 
corresponding substitutions for values of a Iqja  false we may then concludes I qja 
 true.  By default, m is ∅.   
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In source attribution, the intuition is that we want to know the predicates (and their 
corresponding substitutions) from which values in the query result are drawn.  Therefore, only 
non-negated predicates are considered as possible sources.  Negated predicates because they 
do not match our intuition as a source for values in the result.   
 

Definition 4.17  Source attribution 
The source attribution for an expression in DNF, possibly with negated predicates, is the 
union of the source attributions for each disjunct, f.  The source attribution for each disjunct is 
a set of triples <a', n, f> where a' is a sublist of substitutions a for non-negated predicates of f 
that contain free variables and make f true.  n is ∅.   
 
For relevant attribution we want to consider variables that in some way affect the result.  
Because of the safety requirement, renaming any variable in a negated predicate would 
compromise the expression.  As a consequence, any variable in a negated predicate is relevant 
and we have the same issue as introduced in comprehensive attribution for capturing all 
appropriate substitutions.   
 

Definition 4.18  Relevant attribution 
The comprehensive attribution for an expression in DNF, possibly with negated predicates, is 
the union of the relevant attributions for each disjunct, f.  The relevant attribution for each 
disjunct is a set of triples <a, n, f> where a is a substitution for all relevant variables in f that 
make f true.  All variables in the head (free in the formula for the expression) are relevant.   In 
addition, a bound variable is relevant to the result if renaming the variable to some name not 
already in the expression (or eliminating a constant) would relax a constraint on one or more 
of the attribute domains in the result relation (free in the formula for the expression).  By 
definition, any variable in a negated predicate is relevant.  Therefore, as with comprehensive 
attribution, n is itself a set of substitutions <b, m, qj >.  The set n ranges over all of the 
negated predicates qj and includes every substitution b that makes qj true.  We therefore know 
that Iqja  false and I qja  true.  By default, m is ∅.   
 

4.7.3 Attribution equivalence and composition 

Having updated our definition of attribution, we consider the impact of introducing negation 
on our attribution properties.  Determining the equivalence of queries with negation is an open 
question that has persisted for many years (Abiteboul, Hull, and Vianu 1995).  It is not an 
issue that we will attempt to resolve here.  Consequently, claims about the attribution of 
equivalent queries with negation are also outside the scope of this thesis.   
  
However, as seen in our discussion of attribution for CQT expressions, we can address the 
issue of attribution composition separately.  With the introduction of negation, it is apparent 
that, in general, the property of composition no longer holds.  We cannot calculate the 
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attribution for a query result by recursively tracing backwards through each sub-formula.  
However, we identify a subset of queries under which composition continues to hold.   
 
First, we notice that, in the general case, nested negations (i.e. b  ¬¬b ) compromises our 
ability to compose attribution. 
 

Example 4.31  Intersection of predicates a and b using nested negation 
Consider two expressions E33 and E34 with the following formulas. 
f33  a ∧ ¬ (a ∧ ¬ b) 
f34  b ∧ ¬ (b ∧ ¬ a) 
 
Logically, we know that E33  E34.  Indeed when we put E33 and E34 into canonical form by 
pushing and distributing the negation, we end up with f33 = f34 = a ∧ b.  However, suppose we 
defined the following IDB: 
c  a ∧ ¬ b 
d  b ∧ ¬ a 
 
A substitution in the attribution of c includes values for variables in a and every substitution 
that makes b true.  Likewise for a substitution in the attribution of d.  Consider again our 
original expressions now defined using IDB c and d. 
f33'  a ∧ ¬ c 
f34'  b ∧ ¬ d 
 
By expanding c and d and pushing down the negations, we know that the source attribution 
for  E33  source attribution for E34  source attribution for a ∧ b.  However, we can equally 
see that the source attribution for E33'  substitutions in A while the source attribution for E34'  
substitutions in b.   
 
Similarly, negations are fully eliminated in the canonical form of E33 and E34 suggesting that a 
comprehensive or relevant substitution in the attribution for these expressions will be a single 
list of variables that make a and b true.  However, E33' and E34' contain negated literals 
suggesting that a substitution will include a list of variables that make a (or b respectively) 
true and then a set of all substitutions that make c (or d respectively) true.  Composition would 
then recurse on all substitutions in c (or d) rather than a single substitution as in a  b.  
 
We can think of the phenomenon in the example above as an additivity property that reflects 
attribution composition.  If R is an expression composed on Q and r is a result in both Q and 
R, then the attribution for r in R should at least include the substitutions for the attribution of r 
in Q.  Unfortunately, as seen in the example above, composition breaks down when we allow 
negations to cancel one another.   
 
The problem extends beyond nested negations, however.  As demonstrated below, distributing 
negation over conjunction also violates the additivity observed above. 
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Example 4.32  Distributing negation over conjunction 
Imagine expressions with the following formulas. 
 f35  C ∧ ¬ A ∧ B 
 f36  C ∧ ¬ A  C ∧ ¬ B 
Here, we see that the attribution for the first is not the same as the attribution for the second 
because of what you associate in the attribution.  Logically the two are equivalent.  However, 
a triple in the first expression has n  b, m, A  B | Ib/XA  B  true.  A triple in the 
second expression looks like either b, m, A | Ib/XA  true or b, m, B | Ib/XB  
true.  It is straightforward to see that for substitutions a, n ,f where a is only absent from A 
or from B but not both, that the substitutions could look quite different.   as a consequence, it 
is clear that negation poses some problems for our intuitions about attribution.   
  
 
However, by further constraining the syntactic rules under which we may negate predicates, 
we arrive at a rudimentary subset of the DRC where negation is permitted yet attribution 
composition is preserved. 
 

Definition 4.19 Attributable expression. 
To define an attributable expression, we extend the rules for safety presented at the beginning 
of this Section (Ullman 1988).  In particular, we introduce the concept of a negatable formula.  
Only a negatable formula may be negated and remain attributable. 
1. Any atom is a formula and is negatable. 
2. The disjunction of non-negated atoms is a negatable sub-formula. 
3. The disjunction of negatable sub-formulas is negatable.   
 

Examples 4.33 Negatable sub-formulas in the safe DRC 
f37  A   B   C 
Where A, B, and C are relational predicates representing base relations.  Note that the rules of 
safety require that every variable appearing in B and C also appear in A. 
 
f38 A  B  C 
The B  C is a negatable sub-formula.  When we push the negation into the formula, then the 
formula becomes the same as the first formula. 
 
f39  (A  B  C  D is a disjunction of negatable sub-formulas that are negatable on their 
face.  However, were either of the expressions already negated, then the formula would no 
longer be negatable.   
 
We suggest that the attribution of attributable expressions composes.   Because we have 
updated our definitions of attribution to account for negation, our algorithm for composing 
attributions requires corresponding updates.  We first amend our algorithm for calculating 
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attribution and then prove that, for negatable expressions, that the algorithm calculates the 
attribution for an extended expression. 
 

Algorithm 4.3 Attribution composition for negatable query expressions 
 
Compose (A, s) where A is the attribution for s, a disjunction of CQT+ sub-formulas with 
negated predicates, each of which may itself be a disjunction of CQT+ sub-formulas with 
negated predicates. 
 
Compose (A, s)  (a) 
if s  ∅  then return   (b) 
else pick fi a disjunct in s  f1  f2  … fx (c) 
 s  f1  f2 … fi-1  fi+1  …  fx (d) 
 A'  a,f | a,f  A and f = fi (e) 
 Compose (A, s)  ComposeD A',fI (f) 
 
ComposeD A, f  (1) 
if f has no q's then return A (2) 
else pick qi, an IDB in f (3) 
 f  p1  p2  …  qi-1  qi+1…qm (4) 
 if qi is negated (5) 
 then ComposeD UnfoldN A, qi, f (6) 
 else ComposeD Unfold A, qi, f  (7) 
 
UnfoldN A, qi  (8) 
if A is ∅ then return    (9) 
else pick some triple <a, n, f>  A (10) 
 let g be the formula for the definition of qi (11) 
 let u be the unifier for h  unifyf,g (12) 
 n'  RewriteN (n, u, qi (13)  
 ua, n', h  Unfold A  a, n, f, qi (14) 
  
RewriteN n, u, qi  (15) 
foreach triple <b, ∅, q> in n where q  qi (16) 
 n  n  b, ∅, q (17) 
let g be the formula for the definition of qi (18) 
B = attrug, d' (19) 
n  n  B (20) 
 
Unfold A, q  (21) 
if A is ∅ then return   (22) 
else pick a, n, f  A (23) 
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 let g be the formula for IDB E representing q (24) 
 let u be the unifier for h  unifyf,g (25) 
 let E' be E as defined by g with the renaming of u (26) 
 B = attr E' aq/x , d' (27) 
 Rewrite B, ua  aq, h  Unfold A  a,f, q  (28) 
 
Rewrite B, a, h  (29) 
if B is ∅ then return   (30) 
else pick b, m, g  B (31) 
 a  b, n  m, h  Rewrite B  b,g, a, h  (32)   
 
We took our original algorithm and first extended it to account for unions.  Here, we make 
several changes to account for negation.  First and foremost, we extended attribution from a 
pair to a triple consisting of a substitution list a, a formula f to which the substitution list 
provides a true interpretation, and a set consisting of the attributions for each negated 
predicate in the formula.  As a consequence, the descendants of our initial functions to unfold 
and rewrite are updated to return triples in lines (23), (29), and (32).  More significantly, we 
must now consider IDB whose definition includes negated predicates as well as negated IDB.   
 
We calculate the attribution of an IDB with negated predicates in line (27).  We know that for 
attributable expressions, the unification of our original formula with the definition of the IDB 
in line (25) simply adds additional, negated conjuncts.  Consequently, we may simply 
combine attributions for negated predicates in the original expression with attributions for 
negated predicates in the IDB as seen in line (32). 
 
For negated IDB that are also attributable, we know that certain conditions must hold.  
Specifically, we know that the IDB must be a disjunction of non-negated predicates.  Pushing 
negations down, this translates into a unifier that effectively substitutes a conjunction of 
negated predicates for one negated predicate.  Accordingly, for each attribution triple of the 
original formula, we simply remove the attributions for the negated IDB.  This is done in lines 
(15) – (17).  In place of these attributions, we substitute the attributions for each predicate in 
the definition of the IDB.  Note that in line (19), we simply attribute the formula for the IDB 
(assuming the unifier u to avoid conflicts in variable naming).  If the IDB is a disjunction, 
then the attribution will comprise the union of the attributions for each disjunct.   
 
Based upon this revised algorithm, we now offer: 
 

Theorem 4.6 Attribution composition 
Our algorithm for attribution composition computes the attribution for attributable 
expressions. 
 
For IDB that do not include negation, the algorithm is unchanged except for the introduction 
of a third component to the substitution (which is empty in the case of no negated predicates).  
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Under this circumstances, the proof therefore follows that of Theorem 1.5.  More interesting 
are the two cases of IDB that include negations and negated IDB.   
 
Our algorithm for attribution composition computes the attribution for the union of 
attributable, composed CQT+ expressions.  Assume the following CQT+ expressions E1, E2, 
E3 defined by the formulas f, g, and h respectively as: 
 
E1  f  p1  p2  …  pn  q  t1  t2  …  where q is the only IDB in E1 
E2  q  g  r1  r2  …  rm  s1  s2  …  so where ri, si  d 
E3  h  p1  …  pn  r1  …  rm  p1  …  pn  s1  …  so  t1  …  
 
Note that subject to safety, any of the predicates (with the exception of the IDB q) may be 
negated.  To negate the IDB q, as articulated in Definition 1.17, we are limited to disjunctions 
of non-negated predicates.  Our IDB are thus limited to expressions of the form:  E4  q  g  
r1  r2  …  rm 
 
Given E1 defined on d' d  q and r, the result of evaluating E1 on d', attribution 
composition computes the [comprehensive | source | relevant] attribution of result r in terms 
of d as defined by attrr, E3, d. 

Lemma 4.15  a3,hi  A3 is a comprehensive attribution for E3 if and only if a3,hi  
Compose A1,f. 
 
Case  
We first consider the case where the IDB itself is not negated although any of the base 
relational predicates (e.g. r  d may be negated (subject to safety).  Pick some a3, n3, h  
A3.  We know that  a3f and a3g provide substitutions for the non-negated predicates in a 
disjunct of f and g by definition.  Furthermore, we know that n3  b1,m,k|m = ∅  k is a 
negated predicate in a disjunct of h that appears also in the corresponding disjunct of f}  
b2,m,k|m  ∅  k is a negated predicate in a disjunct of h that appears also in the 
corresponding disjunct of g}.  For every negated predicate k, we know that n3 includes every 
substitution b that makes the non-negated predicate k true whether the predicate is in E1 or E2.  
Thus we can model the proof for Lemma 4.10 to verify that the property holds for non-
negated predicates and we know that the property holds for n3, the set of substitutions for 
negated predicates in hi.   
 
What then if we allow the IDB q to be negated?  We know that to be attributable, the IDB 
must be defined in the form of E4, a disjunction of attributable subformulas.  Second, we 
know that when unfolded, pushing down the negation transforms the disjunction into a 
conjunction where every predicate in g (the formula for E4 is negated.  So in h, by definition 
for the attribution of negated predicates, n3 includes the union of the set of all true 
substitutions for each negated conjunct.  But we know that b1,m,k when k is an IDB in E1 
will include every true substitution b1 for the negated predicate k.  Moreover, the negated IDB 
q is safe in E1 but were we to attempt attributing the negation of the formula for E2, we would 
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have an unsafe expression.  Instead, we know that q is negated so we call UnfoldN instead.  
In the subsequent call to RewriteN we see how we remove the positive substitutions for q 
(See Algorithm 4.3 line (17)) and replace substitutions in q with the full set of substitutions 
that make the ug (the formula for E4 subject to appropriate renaming true (See Algorithm 
4.3 line (19)).  Thus, we see that n3 is again n1  n2 (minus the substitutions for q which do 
not appear in hi) and we conclude that → holds. 
 
Case  
Suppose now that you have some a1  a2, n1  n2, hi where hi is a disjunct of h and  
denotes the union of n1 and n2 subject to the removal of substitutions for the IDB of n1 that are 
unfolded in n2.  (Note that if the IDB is not negated, then  reduces to .  We pick some a1  
A1 and pick a2 by construction as before.  Now, we know that a1  a2 gives substitutions for 
non-negated predicates in a3 as before.  However, a2 now also includes b2,m,k for negated 
predicates in g likewise for b1,m,k in f.  But each negated predicate in f and each negated 
predicate in g is also negated in h by our limitation on attributable expressions.  As a 
consequence, we know that we can a1  a2 gives a3 and that n1  n2.  Hence, we may conclude 
that ← holds.   
 

Lemma 4.16  a3,hi  A3 is a source attribution for E3 if and only if a3,hi  Compose 
A1,f where A1 is the source attribution for E1. 
 
We know by definition that a source attribution does not include substitutions in negated 
predicates.  Therefore, we need only consider the case where predicates other than the IDB 
are negated.  Therefore, we only unfold non-negated IDB and consider only source 
substitutions in non-negated predicates.  We see from Lemma 4.13 that the substitutions in 
both the negated and non-negated predicates compose.  Thus, we conclude that the proof then 
mirrors the proof for the composition of source attributions for the union of CQT+ 
subformulas in Lemma 4.11.  In particular, note that ruling out negated IDB, a negated 
predicate in f or g corresponds to a negated predicate in h and vice versa.  Likewise for non-
negated predicates.  See Lemma 4.11 for the case of a free variable in the IDB.    
 

Lemma 4.17  a3,h  A3 is a relevant attribution for E3 if and only if a3,h  Compose 
A1,f. 
 
Where A1 is a relevant attribution for E1.  The challenge in prior classes of queries was to 
verify that variables relevant in E1 and E2 respectively were relevant in E3 and vice versa.  In 
this way, we could construct relevance in the iterative manner of comprehensive and source 
attribution.  For variables in negated predicates, however, this is trivially true simply because 
any negated domain variable is defined as relevant.  Consider negated predicates in f or g 
(apart from the IDB).  Then, the same variables and predicates are relevant in the unfolding to 
h and thus relevant.  For a negated IDB, our condition on attributable expressions guarantees 
that every predicate in g is a negated conjunct and is therefore relevant.  Thus, for negated 
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IDB, we simply substitute the negated IDB in a1, n, f with every positive substitution in n.  
Furthermore, for purposes of safety, every variable in the IDB q of f must be relevant in the 
non-negated predicates and so must also appear in h.    
 
Thus, building heavily upon Theorem 4.5, we conclude that attribution composition computes 
the attribution of a composed expression provided that the constituent expressions are 
attributable.   

4.8 Summary 
We began with an overview of the domain relational calculus upon which we build our formal 
attribution model.  We first define our attribution model for simple, conjunctive queries.  The 
model includes definitions for three different types of attribution as well as several different 
properties of these different attribution types.  In particular, we use the properties of 
conjunctive queries to identify three different categories of equivalence properties and 
granularity principles.   
 
Having presented a preliminary model, we generalize the model by progressively increasing 
the expressiveness of the query language for which the model is defined.  In the first step, we 
introduce arithmetic comparisons (omitting explicit equality).  Our reliance upon conjunctive 
query properties to establish equivalence causes conclusions about "relevant" attribution to 
break down under theta operators.  We indicate how explicit equality compromises the 
attribution of strictly equivalent query expressions.   
 
Subsequent steps introduce union and then negation into the query model.  Composition is the 
only property that continues to hold when unions are permitted.  Finally, all attribution 
properties fail upon incorporation of negation into the query language.  However, we define a 
subset of attributable expressions for which the property of composition is preserved. 
 

 

 



   

5  Extended algebra 
Unfortunately, while practical systems today are rooted in the Domain Relational Calculus 
from which we draw our definitions for attribution, conventional systems do not query using 
the DRC.  Fortunately, the relational algebra, a second formal query language that shares the 
logical foundations of the DRC, aligns closely with SQL, perhaps the most widely used 
commercial data query language.   
 
In this Section, we operationalize our model by extending the relational algebra to support 
attribution.  We begin by sketching our intuition behind an algebra for attribution.  Next, we 
provide some basic definitions from which we build the extended algebra.  After presenting 
our attribution algebra, we consider some of the extended algebra's properties.  We first show 
that the attribution algebra is closed.  We then show that the extended algebra reduces to the 
standard relational algebra and is a consistent extension of the standard algebra (both 
properties are elaborated upon below).  Finally, we prove that for algebraic expressions 
without nested negations, the attribution algebra supports the formal model.  That is to say 
that for any algebraic query expression without nested negations, the extended algebra 
produces the relation-level source granules for attribute-value pairs in the result relation as 
defined by the formal model.   

5.1 Algebra for attribution 
In our extended algebra, metadata to calculate source, comprehensive, and relevant attribution 
is associated with attribute-value pairs of the relational data model.  We propagate the 
attribution metadata in an eager fashion that updates source, relevant, and comprehensive 
attribution with each successive query operation.  
 
In Section 2 on Related Work, we noted that eager approaches continuously maintain 
attribution values.  While the overhead is higher, response to an attribution request is 
correspondingly faster.  Purely lazy approaches, by contrast, wait until a request for 
attribution is posed.  Depending upon the motivation, different applications might prefer one 
approach to the other.  Because intellectual property provisions, as a matter of policy, apply 
uniformly, eager approaches may make the most sense.  For data sets that are of generally 
high quality, a lazy approach for  tracing anomalous values might be more appropriate.   
 
For simplicity, we leverage the granularity intuition from Section 4.  Associating attribution 
with each attribute-value pair corresponds to value-level result granules.  Value-level result 
granularity preserves the observation that different attribute-values in the same tuple may 
draw from different sources and be subject to different constraints (source and relevant 
attribution).  Conversely, rather than maintaining substitutions and query expressions, we 
propagate only relation names and query expressions.  Relation-level source granularity 
certainly does not correspond to all of the different intuitions, but it both limits the amount of 
metadata maintained and propagated while satisfying the needs for specific attribution 
motivations.  As argued earlier in our discussion of granularity, some issues such as 
remuneration or intellectual property are addressable by coarse-grained source granules.   
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5.2 Basic definitions 
To present the extended algebra, we begin with a few basic definitions both as a brief review 
and as an introduction to the notation used throughout the remainder of this Section.   

Let D  D1  D2  …  Dn be the set of disjoint domains over which all relations are defined.  
A scheme is a pair J, D where J is an index (a set of integers) from 1 to maxJ and D is a 
function that maps every element in the index to a domain in D D : J  D.  Note that in 
practice, this is no different than traditional attribute-value naming and is done here for 
notational convenience (Ullman 1988).  A relation is then defined over a scheme as a finite 
subset of the Cartesian product of the domains in the scheme.  Each element t of a relation R 
defined on scheme J,D, written t  R, is a tuple of scalars where for j  1…maxJ, tj  
Dj. 
 
The relational algebra is then defined in terms of two unary and three binary operators that 
take one (or two in the case of binary operators) relations as arguments and returns a single 
relation.  Domains in D are considered  comparable meaning that we can evaluate the binary, 
Boolean operators , , , ,  for values in each domain.   
 
Formal definitions of the unary and binary operators are given below.  Here we offer more 
colloquial intuitions.  Select  is a unary operator that takes a relation R and a -condition.  
The resulting relation S is a subset of R containing all tuples of R that satisfy the -condition.  
Project  is a unary operator that takes a relation R on scheme J,D and a set of indexes K 
 J specifying a subset of the domains in R.  The resulting relation S contains unique tuples of 
R as defined by the projected domains (only values in domains Dk).   
 
Natural Join  is a binary operator that concatenates tuples from each input relation R and 
S to create a single result tuple.  For specified attribute domains that appear in both relations 
(e.g. as in the case of a foreign key), the duplicate occurrence is eliminated.  Result tuples are 
those formed by R and S provided that the tuple from R and the tuple from S agree in the 
value(s) of all specified duplicate domains.  Union union takes two relations R and S, 
defined on the same schema, and returns a relation containing all tuples in R and S.  
Difference  takes two relations defined on the same schema and returns those tuples that 
appear only in R.  
 
Finally, throughout the remainder of this Section we refer to the source of a tuple or the 
source of the specific instance of a value (i.e. the unique tuple in which the referenced 
instance of a domain value appears) as a scalar representing the relation in which the tuple 
appears.  A source is a relation name.   
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5.3 Extended algebra 

5.3.1 Extended relation 

We continue to define the set of all domains D and a relational scheme J,D as before.  In the 
standard relation, each relation element is a tuple of scalars drawn from the corresponding 
domains.  In an  extended relation, however, every scalar is associated with two sets of 
sources and extended tuples are associated with an additional set of sources.   
 

Definition 5.1  Extended relation R' 
An extended relation R' over scheme J,D is a finite subset of the Cartesian product of cells 
written E1  … EmaxJ  2S.   
 

Definition 5.2  Extended tuple t' 
An element t'  R' is an extended tuple of R'.  An extended tuple is a tuple of cells paired with 
a set of sources that returns the comprehensive attribution for every cell in the tuple.    The jth 
element of t' is the cell denoted by t'j and the set of sources comprising the comprehensive 
attribution for the tuple is referenced as tC'.  
 

Definition 5.3  Cell Ej 
A cell is defined with respect to an extended relation R' on a schema J,D.  A cell is a triple 
composed of a scalar drawn from an attribute domain and sets of sources corresponding to the 
source attribution and relevant attribution for the scalar.  For a scheme J,D and j  J, we call 
Ej the Cartesian product Dj  2S  2S.  We reference these elements as tVj, tSj, and tIj.   
 
Two or more tuples with identical values but different source sets are said to be weak 
duplicates.  Such tuples are also referred to in the literature on extended algebras as value-
equivalent tuples (Dey, Barron, and Storey 1996; Dey and Sarkar 1996). 
 

Definition 5.4 Weak duplicate 
Given two extended tuples t1 and t2 in extended relation R defined over the scheme J,D, we 
say that t1 and t2 are weak duplicates if and only if j  J, t1 Vj  t2Vj.   

5.3.2 Operations on extended relations 

We now define a number of operations on extended relations from which we will construct 
our attribution algebra.  From these operations we will define our attribution algebra for 
extended relations. 
 

Definition 5.5   Weak duplicate elimination 
Given an extended relation R' defined over the scheme J,D, the removal of weak duplicates 
in R' is a relation over the scheme J,D:  
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S'  R'  s|r  R' and sVk  rVk, sSk  r    duprrSk, sIk  r  duprrIk, and sC  
 r  duprrC .   
 
Weak duplicate elimination is very much like the coalesce function introduced by Snodgrass 
(Snodgress 1987 cited in: Bohlen, Snodgrass, and Soo 1996; Dey, Barron, and Storey 1996) 
to manage value equivalent tuples.  Unlike much work in temporal databases, our  is not an 
algebraic operator that users may use to manage overlapping temporal ranges.23  Rather, we 
follow Wang and Madnick (1990) and Dey (1996), where weak duplicate elimination is 
incorporated into the extension of each algebraic operator's definition (see below) to preserve 
the relational set semantics, which does not allow weak duplicates. 
 
The reader will note that a similar problem emerges with multiple relations involving the 
same attribute as in the case of a natural join on a foreign key or attributes used in a  
comparison as in select .  Because of the distinction noted previously in Section 4 between 
natural join on the same attribute domain and -comparable attribute domains, we provide for 
attribute coalesce. 
 

Definition 5.6  Attribute coalesce 
Given an extended relation R1 over the scheme J,D, a set K  J, the coalesce of R1 for the 
attributes in K is the relation R2  R1,L over the domains in J,D such that, where eqt is 
the application of the Boolean function verifying equality for all parameters on the values tvk 
of tuple t, k  K: 
 
R2 = R1,K  t2 | t1  R1 such that eqt1) and j  J  K, t2j  t1j and j  K, 
t2Vj  t1Vj and t2Sj  kK t2Sk, t2Ij  kK t2Ik, t2C  t1C   
 

Definition 5.7 + Select+ 

Given an extended relation R1 over the scheme J,D, a set K  J, and a Boolean function  
over the domain Dk1 … DkK the selection of R1 on the condition  for the attributes k  
K is R2  R1,,L over the domain J,D such that, where t is the application of the 
Boolean function  on the values tVk of tuple t, we define a function RelevantY that returns 
the set of variables relevant to the set of domain variables Y and set X  RelevantK.   
 
R2  

                                                

R1,,L  t2|t1  R1 such that t1 and j  J, t2Vj  t1Vj, t2Sj  t1Sj, t2C  t1C 
and if j  RelevantK then t2Ij  t1Ij  kK tSk  kK tIk else t2Ij  t1Ij   
 
Relevant is recursively defined to identify all sources that are mutually dependent through -
comparisons.  The set I updates which values in the tuple of an extended select are bound by 

 
23 (Dey, Barron, and Storey 1996) provides a nice review of different coalesce operators in the literature to 
manage time stamps 
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evaluating the -condition.  In this way, we make explicit the observation that the -condition 
is relevant to specific values in the corresponding tuple of the result relation.24   
 

Definition 5.8 + Project+ 

Given an extended relation R1 over the scheme J1,D1, an index J2, and a function p from J2 
to J1, the projection of R1 w.r.t. p is R2  R1 over the scheme J2,D2 such that: 
j  J2, D2j  D1pj, and 
R2  R1  t2| t1  R1 and t2C  t1C and j  J2, t2j  t1pj.   
 

Definition 5.9 + Cartesian Product+ 

Given two extended relations R1, defined over the scheme J1,D1, and R2, defined over the 
scheme J2,D2, the Cartesian product+ of R1 and R2 is a relation R3  R1  R2 over the scheme 
J3,D3 such that, for M1  maxJ1 and M2  maxJ2: 
J3 is an index ranging from 1 to M1  M2, and 
j  J3, if j  M1 then D3j  D1j, else D3j  D2j  M1, and  
R3  R1  R2  t3|t1  R1 and t2  R2 and t3C  t1C  t2C and j  J3, if  j  M1 then t3j  
t1j else t3j  t2j  M1   
 

Definition 5.10 (+ Difference+25 
Given two extended relations R and S defined over the scheme J,D, the difference of R and 
S is a relation T  R  S over the scheme J,D such that T  R  S  t|s  S such that j, 
tVj  sVj and r  R such that j  J, tVj  rVj, tSj  rSj, tIj  rIj  

                                                

sS sC and tC  
rC  sS sC.   
 
The set of sources tI captures our intuition about negation.  To verify that some instance of a 
value (e.g. the value in a specific extended tuple) does not exist in some extended relation S', 
we must compare the value-instance to every valid substitution in S'.  

5.3.3 Extended relational operators 

Building from the operators defined on extended relations, we can now define the attribution 
algebra as an extension of the standard relational algebraic operators.  The attribution for an 
expression is then defined inductively from the extended definitions of the operators.   
 

 
24 We introduced the function Relevant rather than explicitly defining the term because of our difficulty in either 
explicitly defining the term or in characterizing how tightly our syntactic rule bound the formal definition of 
relevance.  We present the following as one bound on relevance:  relevanttSk is initialized to kK tSk and 
recursively defined as relevanttSk  tSj where tSj  relevanttSk is not empty. 
25 As will be discussed in greater detail below, the treatment of algebraic difference differs from our management 
of negation in the formal model of Section 4.  However, for algebraic expressions without nested negations, we 
will see that the algebra and the formal model agree.     
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Definition 5.11 ' Extended select 
Given an extended relation R', 'R',,L  +R',,L   
 
The extended select is simply the select defined on extended relations. 
 

Definition 5.12 ' Extended project 
Given an extended relation R', 'R'  +   
 
The extended project is a projection followed by a weak duplicate elimination in order to 
account both for duplicates among extended tuples and duplicates among value equivalent 
tuples.   
 

Definition 5.13 ' Extended natural join 
Given extended relations R' and S' defined on schemas J1,D1 and J2,D2 respectively with a 
function p that maps H   J1  to J2 such that D1h  D2ph,  
R' ' S'   R' +  S', , H, H   
 
The extended natural join is a Cartesian product on extended relations followed by a selection 
on equality for all attribute domains used (named) identically as indicated by the function p.  
Finally, we coalesce on all attribute domains used (named) identically.  The reader may 
observe that the effect of an extended Cartesian product (' is achieved by taking the 
extended natural join where H is empty.  Likewise, extended Intersection ') is simulated by 
taking extended natural join on two relations R' and S' defined for the same schema J,D. 
 

Definition 5.14 (' Extended union 
Given extended relations R' and S' defined on the same schema J,D, the extended union R' 
' S'   R'  S' where  is the standard set union operator.    
 
Extended union is simply the standard set union operator that uses weak duplicate elimination 
to manage value equivalent tuples with different sets of sources.   
 

Definition 5.15 ' Extended difference 
Given extended relations R' and S' defined on the same schema J,D, the extended difference 
R' ' S'   R' +  S'   
 
We can now define attribution in the context of our extended relational algebraic operators.  
As we define attribution, we informally relate our algebraic definitions to the formal model of 
Section 4.  A formal proof of the relationship between the algebraic definition and the formal 
model is provided later.   
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Definition 5.16  Comprehensive attribution 
The comprehensive attribution for a scalar tVj in the result of an extended relational 
algebraic expression E having schema J,D is defined as the set tC.   
 
tC is in fact the comprehensive attribution for the entire tuple reflecting the observation from 
the formal model that when considering relation-level source granules, the comprehensive 
substitutions that make any value of tuple t in the expression true are the same for every other 
value in tuple t.  Moreover, managing the difference operator is actually captured in tC by 
construction.  This explains Definition 5.15 that updates tC with the comprehensive attribution 
for every tuple of the negated relation when evaluating the difference of extended relations R 
and S.   
 
Definition 5.17  Source attribution 
The source attribution for a scalar tVj in the result of an extended relational algebraic 
expression E having schema J,D is defined as the set tSj.   
 
The attribution algebra continuously updates the source attribution for each scalar value in an 
extended relation by managing the set tSj.  Note that the source attribution for a value in a 
tuple is not updated by the extended project or extended union except in the case of weak 
duplicates.  In these instances, weak duplicates represent multiple occurrences of an instance 
in the same relation (project) or distinct derivations for the same instance (union) as discussed 
in the formal model.  Likewise, source attribution is not updated in the case of natural join 
except for those values that are drawn from the same (named) attribute domain (i.e. 
coalesced).  In the formal model, we identified this as multiple occurrences of the same 
variable in different conjuncts representing relational predicates.  Note also how the set tSj is 
not altered in the definition of extended set difference, corresponding to our intuition that a 
negated sub-query is never a source for a value in the result of the difference.   
 

Definition 5.18  Relevant attribution 
The relevant attribution for a scalar tVj in the result of an extended relational algebraic 
expression E having schema J,D is defined as the set tSj  tIj.  
 
Notice that the relevant attribution is defined in terms of two sets of sources, tSj and tIj.  
The set tIj is not updated for extended project and extended union except in the case of weak 
duplicates.  Because weak duplicates represent distinct derivations for a given instance of a 
value in the result, we legitimately include the relevant attribution for each weak duplicate.  
We see that tIj is always updated when evaluating the extended difference but only 
selectively updated when evaluating -conditions.   
 
For extended difference, tIj is updated with the comprehensive attribution of every tuple in 
the negated relation.  Comprehensively attributing every tuple corresponds to our intuition 
from the formal model about evaluating the truth of a negated sub-formula.  We see that 
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relevant attribution includes tSj corresponding to the idea that the source of a value is 
certainly relevant.   
 
In the selection operation, we update the relevant attribution for every value in a tuple with 
the relevant attribution of the selection variables.  Intuitively, a selection condition restricts a 
subset of (possibly all) values in the result tuple hence the introduction of the relevant 
function which relations are linked through -comparison.  Recall also the implicit selection-
on-equality in the natural join.  Note that in the special case of natural join where there are no 
shared variables (i.e. no implicit selection), the relevant attribution for values in the result are 
drawn exclusively from the corresponding constituent tuple of the Cartesian product.  This 
corresponds to our intuition from the formal model that restricting the tuples in one argument 
of a Cartesian product is not a restriction on the second argument. 

5.4 Properties of the algebra 
Having presented our attribution algebra, we now consider properties of the extended algebra.  
We demonstrate first that the algebra is closed.  Then, following the literature on extended 
algebras for temporal databases (Dey, Barron, and Storey 1996), we establish that the 
attribution algebra both reduces to and is a consistent extension of the standard relational 
algebra.  Finally, we show that, for a limited set of extended algebraic query expressions, the 
attribution returned by the algebra corresponds to the relation-level source granules defined 
by the formal model.   

5.4.1 Closure of the extended algebra 

The intuition behind closure is that an extended algebraic operation, when applied to an 
extended relation(s), returns an extended relation.  Maier (1983) identifies three requirements: 

1. the values in each cell of the extended relation all come from the correct domains 
2. there are no (weak) duplicates in an extended relation 
3. the relations must be finite 

 

Lemma 5.1  The values in each cell of the output from an extended operation on 
extended relation(s) all come from the correct domains. 
Case 'R' where R is defined on schema J,D:  We know by definition that 'R' is 
defined on a schema K,D where K  J and that for every s'  'R' t'  R' such that k  
pj  K , s'Vpj  t'Vj so all values come from valid domains.  In cases where there are no 
weak duplicates, then s'  'R' is value equivalent to exactly one tuple t'  R'.  In this case, 
s'C  t'C and k  pj  K , s'Spj  t'Sj and s'Ipj  t'Ij so the sets of scalars all come 
from the appropriate domains.  If there are weak duplicates among the t'Vj for all j  K, then 
the sets s'C,  s'S, and s'I are simply the union of the constituent weak duplicates and the union 
of valid scalar sets is surely still in 2S. 
 
Case σ'R':  We assume that R' is an extended relation.  Therefore, we know that t'  σ'R' 
 t'  R' so if R' is an extended relation, then σ'R' must also. 
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Case R' ' S' where R and S are union compatible in the standard sense on schema J,D):  
We know that an extended tuple t'  R' ' S' must come from R', from S', or from both.  
Consider first the case where t' comes from only one.  Then we know for such a tuple t', r'  
R' or s'  S' such that t'  r' or t'  s' and all values come from appropriate domains.  In the 
case that t' comes from both, then we know, as with weak duplicates in project, that t'C  r'C  
s'C and j  J, t'Vj  r'Vj  s'Vj, t'Sj  r'Sj  s'Sj and t'Ij  r'Ij  s'Ij.   
 
Case R' ' S':  Recall from the definition that this is a Cartesian product followed by a 
selection and a coalesce on the common attributes K  J.  Certainly the Cartesian product of 
extended relations is an extended relations because it is merely the r'  s' for every r'  R and 
s'  S'.  Likewise, the select also returns an extended relation (see above).  Consider, then, the 
Coalesce.  t  R' ' S', tC is unchanged from the Cartesian product and select.  For indexes j 
 K we know that tj is unchanged from the Cartesian product and select.  For index in K, we 
know that tVk is unchanged and that tSk and tIk is the union of all values in K where each 
tS and tI is from the correct domains.  Hence the union must still be in 2S. 
 
Case (R'  S' where R and S are union compatible in the standard sense on schema J,D.  
For t'  R' ' S', r'  R' such that t'C  r'C   s'Ss'C so surely t'C is from the correct 
domain.  Moreover, j J, t'Vj  r'Vj and t'Sj  r'Sj.  By construction, t'Ij is the union of 
valid source sets, hence we conclude that the values in each cell of the output from an 
extended operation on extended relation(s) all come from the correct domains.   
 

Lemma 5.2  There are no (weak) duplicates in the output of an extended operation on 
extended relation(s). 
First, we know that extended relations are defined as sets so that there are no duplicate 
extended tuples in an extended relation.  A different question is whether the extended 
operators can produce weak duplicates.  We know from their definitions directly that 
extended select, extended join, and extended difference cannot produce weak duplicates 
assuming that the initial input relation(s) are valid extended relations (i.e. with no (weak) 
duplicates).  The remaining operators, extended union and extended project both are defined 
as explicitly calling weak duplicate elimination.  Hence, we are assured that there are no 
(weak) duplicates in the output of an extended operation on extended relation(s).   
 

Lemma 5.3  The result of an extended operation on extended relation(s) is finite. 
Case 'R' where R' is defined on schema J,D:  We know that |'R'|  |R'| because each 
extended tuple of 'R' is a tuple of R'  on K,D where K  J.  At most, every tuple of 'R' 
is distinct, reduced by weak duplicate elimination.  Therefore if R' is finite, 'R' must also 
be finite. 
 
Case σ'R':  By definition, σ'R'  R' therefore |σ'R'|  |R'|. 

 



100 
 
 
 
  
Case R' ' S' where R' and S' are union compatible in the standard sense):  It must be the 
case that |R' ' S'|  |R'|  |S'|.  If R' and S' are both finite, then so is R' ' S'.  Note as in the 
case of extended project, weak duplicates will reduce the cardinality of R' ' S'. 
 
Case R' ' S':  This is a Cartesian product followed by a select and a coalesce.  As observed 
above, an extended select either leaves the cardinality of the input relation unchanged or 
reduces it.  Coalesce merely collapses duplicate attribute (domains); the output of a coalesce 
has the same cardinality as the input.  Thus, we conclude |R' ' S'|  |R'|  |S'|. 
 
Case (R' ' S' where R' and S' are union compatible in the standard sense):  Thus R' ' S'  
R' so |R' ' S'|  |R'|.   
 

Theorem 5.1  The attribution algebra is closed. 
From Lemmas 5.1-3, we conclude that Theorem 5.1 holds.   

5.4.2 Relationship between the standard algebra and extended algebra 

Having verified that we can compose operators, we next verify that the extended algebra is 
both a consistent extension of and reduces to the standard algebra.  When we say that the 
extended algebra reduces to the standard algebra, we are saying that the extended algebra 
preserves the relational semantics.  In other words, from the perspective of the scalar values 
drawn from attribute domains, the extended operators treat an extended relation on schema 
J,D as the standard relation would treat the corresponding standard relation on the same 
schema and for the same attribute-value substitutions.  Following Dey (1996; 1996), we first 
define a helper function Reduce.  The purpose of Reduce is to take an extended relation and 
map it to the equivalent relation without the attribution extension.  We then show that the 
extended algebra reduces to the standard algebra through an equivalence proof.  The 
equivalence proof is illustrated in Figure 5.1.   
 

Definition 5.19  Reduce 
Given an extended relation R' on a schema J,D, reduceR'  t2 | t1  R' and j  J, t2j  
t1Vj also on scheme on J,D.   
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S' ' R'
S' R' 'R'

ReduceR'

S R R  Reduce'R' 

ReduceS' 

S  R  ReduceS' ' R' 

Figure 5.1  Reduction  

Theorem 5.2  The extended algebra reduces to the standard algebra 
To prove the theorem, we need simply show that the reduction holds for every unary and 
binary operator of the extended algebra.  In each case, we need to show both directions.  The 
reduction of a tuple t'  extended operator is in a standard operator applied to reduced inputs 
and vice versa.   
 
Case 'R' where R' on schema J1,D1:  By definition of Reduce we know that R is also 
defined on J1,D1 and by definition of extended project, we know that 'R' is defined on a 
function p and produces a schema J2,D2.  Note that R is defined similarly for R on 
J1,D1 and the same p.  Assume that R  ReduceR'.  Pick some t  R.  Then by 
definition of ,  t1  R s.t. j  J2, t1pj  t2j.  Because t2 is a set, we know that there 
may be more than one such t1, but there is certainly at least one.  From the definition of 
Reduce, we know that for t1 on J1,D1,  t1'  R' such that j  J1, t1'Vj  t1j.  But then 
'R' must give t2' on J2,D2 where j  J2, t2'j  t1'pj by definition of '.  And because t1 
 Reducet1', certainly Reducet1'pj   t1pj.  This tells us that Reducet2'  t2 so t2  
Reduce'R'.  Likewise, pick some t2'  'R' where we know Reducet2' gives t2 on 
J2,D2 when j, t2j  t2'Vj.  By definition of ' we know t1'  R' such that j  J2, t1'pj 
 t2'j where there may be more than one such t1 on J1,D1.  But Reducet1'  t1 on J1,D1  
R where j  J, t1'Vj  j.  This means that t1pj  t1'Vpj or that t2  t2'V j  J2.   
  
Case σ'R' where R' is defined on schema J,D:  Pick t  R and assume t'  'R' 
for which t  Reducet'.  We know that R  t | t'  R' and j tj  t'Vj so for every t, 
there must be some t'.  But t satisfies ,L which means k, tV'k also satisfies , a 
contradiction.  Now pick t'   'R' where t  Reducet'.  Then assume t  R.  But if t' 
 'R' then t'V satisfies ,L.  But j  J, t'Vj  tj by definition of reduce so t must also 
satisfy ,L which means that t  R, a contradiction.   
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Case R' ' S' where R' and S' are union compatible in the standard sense): Pick t'  R' ' S'.  
If we Reducet' we get t where j  J, tj  t'Vj.  But by definition, we know t'  R', t'  S', 
or both.  If t'  R' then Reducet'  t  R by definition which means t  R  S.  Likewise for t' 
 S' so certainly for both.   Now pick t  R  S.  Then t  R, t  S, or both.  When t  R, we 
know t'  R' s.t. j  J, t'Vj  tj meaning that t  Reducet'.  But if t'  R'  then t'  R' ' 
S' and the same for t  S and again certainly for both.   
 
Case R' ' S':  Pick t  ReduceR' ' S'.  Then t corresponds to t'  R' ' S' where j tj  
t'Vj.  J,D is the schema for R' ' S'.  Then j, t'Vj is from R' or from S' or from both (if j 
is in the k's of overlapping domains from which the selection on the Cartesian product is 
made).  But for R',  t'Vj  tj  R.  Likewise for S' and S.  We note that for t'Vk, tk holds 
in R and S.  Certainly t  R  S.  Now pick t  ReduceR'  ReduceS'.  Then j, tj from 
ReduceR', ReduceS' or both in the event that j is in the k's).  From the definition of 
Reduce, we see that t'Vj  tj in R' and similarly for S'.   Finally, for the k's, we see that t'Vk 
 R'  t'Vk  S'.  Hence we conclude that ReduceR' ' S'  ReduceR'  ReduceS'.   
 
Case R' ' S' where R' and S' are union compatible in the standard sense.  Pick t  
ReduceR' '  S'.  Then t corresponds to t'  R' ' S' where j tj  t'Vj.  Then j, t'Vj  R' 
and  S'.  Surely Reducet'  t  R.  And if t'  S' then Reducet'  t  S.  So, we know that 
t  ReduceR' ' S' appears in ReduceR'  ReduceS'.  Now pick t  ReduceR'  
ReduceS'.  Then j, tVj  ReduceR' and  ReduceS'.  Then t'  R' such that j, t'Vj  
tj  R and t'  S'.  Thus, we see that ReduceR' ' S'  ReduceR'  ReduceS'.   
 
Therefore, we may conclude that for unary operators, t  Reduceop'R' iff t  
opReduceR' and for binary operators, t  ReduceR op S iff t  ReduceR op' ReduceS. 
 
 
Having verified that the extended algebra reduces to the standard algebra, we consider the 
inverse and ask whether the extended algebra is a consistent extension of the standard algebra.  
In other words, we are asking whether the attribution algebra has the property that every 
relational algebra expression has a counterpart in the extended algebra.  Again following Dey 
(1996; 1996), we first define a helper function Extend.  Extend takes an algebraic expression 
as a single argument and extends the corresponding relation by applying the formal model to 
the DRC equivalent assuming a database of relations in the original argument.  Because there 
may be more than one valid extended form for a relation (e.g. depending upon the database 
against which an expression is evaluated), we again turn to an equivalence proof.  To 
demonstrate that the algebra is a consistent extension, we want to show that extending the  
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 extended relational operation on the extended relational inputs.  This intuition is depicted in  
Figure 5.2. 

Definition 5.20  Extend 
Given an algebraic expression E that returns a relation R on schema J,D, Extend transforms 
E into its DRC equivalent F26  having formula f to construct the extended relation R'.  Let 
database d be comprised of the relations in the expression E and granularity A take an 
attribution and return the relation names corresponding to the substitutions.  Then ExtendR 
 t2 | t1  R where t2C  granularitycomprehensive-attributiont1, F, d and j  J, 

 t2Vj  t1j 
t2Sj  granularitysource-attributiont1j, F, d 
t2Ij  granularityrelevant-attributiont1j, F, d   

                                                

S  R
S R R

ExtendR

S' R' 'R'  ExtendR 

ExtendS 

S' ' R'  ExtendS R 

Figure 5.2  Extension 

Theorem 5.3  The extended algebra is a consistent extension of the standard algebra 
As with reduction, we show that each extended operation is a consistent extension of its 
standard analog.  Let E be an abbreviation for the function Extend. 
 
Case 'R':  Pick t'  'ER:  By definition, t'C  R.  j t'Vj  tpj which is just 
R.  t'Sj  R.  t'Ij  ∅.  Then certainly t'  ER.  Now pick t'  ER.  Then t  R 
for which t'Vj  tj.  If we extend t into some t', we know that j, t'Sj  R, t'Ij  ∅, and t'C  
R.  Of course this is just 'ER.  
 
Case σ'R' for the selection condition ,K where R' is defined on schema J,D:  
Recognizing that the selection condition ,K is the same for both  and ', we define the set X 
 RelevantK for both the standard and the extended select.  Pick t'  'ER.  By 
definition, ,K is true for all t'.  Furthermore, we know t  R, j t'Vj  tj; t'Sj  R; t'C  

 

 
26 See (Ullman 1988) 
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R and x  X, t'Ix  xt'Ix  t'Sx.  j  X, t'Ij  ∅.27  But the set of all such t is 
simply R which extended is the set of all t'.  This is just ER.  Similarly, we can pick t' 
 ER which is just the extension of t  R.  Then we know that ER gives t' such 
that t'C  R and j t'Vj  tj; t'Sj  R; t'C  R and for X (in this case X  J), x  X, 
t'Ix  xt'Ix  t'Sx.  j  X, t'Ij  ∅.  But this tuple is certainly in ER because 

                                                

R  
R and we know that t satisfies ,K as does t'.  Therefore we know t'  'ER.  
 
Case R' ' S' where R' and S' are union compatible in the standard sense):  If t'  ER ' 
ES then t'  ER, t'  ES, or both.  If t'  ER then t  R, j t'Vj  tj; t'Sj  R; 
t'Ij  ∅ and by definition, t'C  R,S.  Certainly if t  R, t  R  S.  Moreover, because t'  
ES then we know there is no t" in ES for which j t"j  t'j.  Thus, we know that t'  
ER  S.  The same holds for t'  ES.  Now suppose t'  ER and ES.  Then t1  R and 
t2  S.  If we were to extend t1 and t2 we would find that for t  t1  t2 when j t1j  t2j, 
t'Vj  t1j  t2j; t'Sj  t1'Sj  t2'Sj  R,S; and t'Ij  t1'Ij  t2'Ij  .  t'C  t1'C   t2'C  
 R,S.  But for t1  t2 certainly t  R  S hence t'  ER  S.  Now, if t'  ER  S then we 
know that t  R  S s.t. t'C  R,S and j tj  t'Vj.  If t  R then t'Sj  R.  Likewise 
if t  S.  If t  R and t  S then we know t'Sj  R, S.  But if t  R (and not S) then t1'  
ER and there is no t2'  ES so we know that for t'  t1' ' t2', t'  ER ' ES.  We can say 
the same if t  S and not in R.  If t  R and t  S then we know t1'  ER and t2'  ES for 
which t'  t1' ' t2'.  Then j t1j  t2j, t'Vj  t1j  t2j; t'Sj  t1'Sj  t2'Sj  R,S; and 
t'Ij  t1'Ij  t2'Ij  .  t'C  t1'C   t2'C   R,S.  Thus, we know t'  ER ' ES.  
 
Case R' ' S'28:  Let R be defined in J1,D1 and S be defined on J2,D2 with n = maxJ1 and m 
 maxJ2.  The result of the natural join is a relation on scheme J,D where J  n  m.  K is the 
set of selection attributes where K  1 … n  m and p is the projection function for J to 1 
… n  m.  First, assume K  ∅.  Natural join then reduces to Cartesian Product.  Pick t'  
ER ' ES.  Then we know that j1..n  t'j  t1'j  ER and that jn+1..n+m t'j  t2'j  n 
 ES.  Finally, t'C  R,S.  But then t'1  ER corresponds to t1  R and likewise for t2' and 
t2  S.  Thus we see t  R  S and t'  ER  S.  If t'  ER  S then we know t  R  S 
s.t. j1..n  tj  t1j  R and that jn+1..n+m tj  t2j  n  S.  But we can extend t1 to t1'  
ER and likewise for t2'  ES.  We construct t' from t1' and t2' s.t. t'C  R,S.  Thus, we 
know t'  ER ' ES.  Now, we assume K  ∅.  We then make use of Theorem 5.1 and the 
earlier cases for Cartesian product, selection, and then finally projection to verify that the 

 
27 In this instance, for x  X, t'Ix is just R.  Otherwise, t'Ij  ∅.  Note that in the more general case (as in the 
inductive case considered later in this Section), the Intermediate set for t'Ij of t'  'R' is by default the 
intermediate value for the corresponding t'Ij  R'.  As noted earlier, we introduced the function Relevant as a 
proxy for a syntactic rule. 
28 Recall that we define natural join as a Cartesian product followed by a selection on equality for attributes on 
the same domain, a coalsce, and then a projection of the duplicate columns.  If there are no join attributes, then 
we simply have a Cartesian product.  If the two schemas are the same, then we have an intersection.   
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property holds.  In particular, we know that k  K, t'Sk  R,S and that for each k  K, we 
know that x  RelevantK as in the selection condition.  In this instance, t'Ix  R,S.  For j 
 K, t'Sj  R or S depending upon whether pj  n.  Likewise for j  RelevantK, t'Sj 
 t1'Ipj or t2'Ipj  n depending upon whether pj  n.  
   
Case (R' ' S' where R' and S' are union compatible in the standard sense):  If t'  ER' 
ES then t' is an extended tuple t'  ER and t'  ES.  This means that t s.t. t  R, t  S, 
and j t'Vj  tj; t'Sj  R; t'Ij  S; t'C  R,S.  But then t  R  S and it is easy to 
see that extending t we get t'  ER  S.  Now pick t'  ER  S.  Then t s.t. t  R, t  S and 
t'C  R,S.  j t'Vj  tj; t'Sj  R; t'Ij  S.  But if t  R and t  S, we can extend t to 
t"  ER and we know that t"  ES.  It is then easy to see that t"  t'  ER  ES.  
 
Therefore, we may conclude that for unary operators, t'  EopR iff t'  op'ER and for 
binary operators, t'  ER op S iff t'  ER op' ES.   

5.4.3 Relationship between the extended algebra and the formal definition 

Having related our attribution algebra to the standard relational algebra, we finally consider 
the relationship between the extended algebra and the formal model of Section 4.  In 
particular, we want to know whether the extended algebra supports attribution as defined in 
the formal model.   
 
From Theorem 5.2, we know that we can translate query expressions in the extended algebra 
into equivalent expressions in the standard algebra.  From Ullman (1988), we know that we 
can translate algebraic query expressions into equivalent queries in the Domain Relational 
Calculus.   Therefore, for any query expression in the extended algebra, using the DRC 
translation of Ullman (1988), we can evaluate whether the relations in the algebraic 
attribution correspond to the substitutions in the formal model for comprehensive, source, and 
relevant attribution.  The comparison confirms that for algebraic query expressions without 
nested subtraction in the right hand side of a difference expression (the subtrahend), the 
algebraic attribution corresponds to the formal model. 
 
We saw in Section 4 that because of its additivity property, attribution has complications 
when faced with nested negations (i.e. x  ¬¬ x ).  To account for this limitation, we first 
verify: 
 
Lemma 5.4  Nested negations 
Algebraic query expressions without nested subtraction in the right hand side of a  difference 
expression correspond to Disjunctive Normal Form DRC expressions where negations are 
pushed down to literals without nested negations (e.g. canceling ¬ ¬ x ).  We establish this 
by induction on the number of operators in the algebraic expression. 
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In the base case of zero operators, the algebraic query expression is a single relation R on 
schema J,D or a constant relation.  We know from Ullman (1988) that this is translated into 
an equivalent relational predicate rX1,…,XmaxJ or a corresponding expression for the 
constant relation t1,…,tn on J,D with formula X1   t1D1 … XmaxJ  t1D maxJ 
… tnD1  … tnDmaxJ where there is a disjunct for each tuple ti.  Certainly in the 
base case there are no nested negations. 
 
In the induction hypothesis, we assume that for a query with n operators, assuming no 
difference operators in the right-hand sub-tree of a difference operator, the resulting DRC 
translation in DNF with negations pushed down to literals will not nest negations.  We want 
to verify that the same holds for a query expression with n+1 operators. 
 
Case R:  The DRC expression for the projection merely reassigns the set of free and 
bound variables in the formula for R so that a subset of the free variables in R are free in R 
and all others are bound.  Certainly the hypothesis holds. 
 
Case σR where R is defined on schema J,D:  Without loss of generality, we assume that 
the selection condition is a single theta comparison on a domain in the schema of R.  The 
formula in the DRC expression for R is f which, by the induction hypothesis, has no nested 
negations, and the formula for the selection condition is a theta comparison X  Y, X  c or 
c  X where X and Y are variables for domains Dj1 and Dj2 and c is a constant drawn 
from Dj1.  Then, the formula in the DRC for σR is f  X  Y or f  X  c or f  c  X.  
If f is in DNF with no nested negations, then we know that we can distribute the conjunction 
across every disjunct in f without introducing any nested negations. 
 
Case R  S where R and S are union compatible in the standard sense):  If the formula for 
the DRC expression of R is f and the formula for the DRC expression of S is g, and by the 
induction hypothesis, f and g are in DNF with no nested negations when negations are pushed 
down, then with appropriate renaming and reordering, the formula for the DRC expression 
corresponding to R  S is f  g.  Because f and g are already in DNF, no further distribution is 
required.  Certainly the disjunction of two formulas that satisfy the hypothesis will itself 
satisfy the hypothesis. 
 
Case R  S:  The formulas for the DRC of R and S are the disjunctions f1  …  fn and  g1  
…  gm respectively, where any negated literals among the fi's and gj's are safe (i.e. bound) 
within each disjunct.  Then with appropriate variable renaming and reordering, the formula 
for the DRC of R  S is f1  …  fn  g1  …  gm.  After distribution, we have f1  g1  f1  
g2  …  f2  g1  …  fn  gm where each fi and gj is a conjunction of positive and negative 
literals so certainly the formula for the DRC of R  S is also in DNF where the natural join 
does not introduce nested negations.   
 
Case (R  S where R and S are union compatible in the standard sense where the subtree for 
S has no difference operators:  The formulas for the DRC of R and S are the disjunctions f1  
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…  fn and  g1  …  gm respectively, where any negated literals among the fi's are safe (i.e. 
bound) within each disjunct and there are no negated literals among the gj's.  The formula for 
the DRC of R  S is then f1  …  fn  ¬ g1  …  gm.  Distributing the negation across the 
disjuncts gives f1  …  fn  ¬ g1  … ¬gm where each gj is a conjunction of literals.  
Distributing the negated conjuncts across the fi's gives f1  g1  …  gm  f2   g1 ….  
fn  g1  …  gm.  Some of the literals among the fi's may be negated, but after pushing the 
negations into the gj's and further distribution, into DNF, there is no introduction of nested 
negations. 
  
Consequently, we conclude that for algebraic query expressions without a difference operator 
in the right-hand subtree of a difference operation, the formula in the corresponding DRC 
expression, when converted into DNF, will never encounter nested negations when pushing 
negations down to the literals.   
 
Knowing that such a relationship between algebraic expressions and DRC formulas holds, we 
can therefore establish that, for the subset of queries that limits the nesting of difference 
operators, the attribution constructed inductively in the algebra corresponds to the formal 
definition. 
 

Theorem 5.4  The attribution algebra corresponds to the formal model where the 
nesting of difference operators is limited. 
As with Lemma 5.1, we establish the theorem by induction on the number of operators in the 
algebraic expression, comparing the definitions constructed in the algebra to the formal 
definitions of the corresponding DRC equivalent.  For notational convenience, all relations R, 
tuples t, and operators  are implicitly extended. 
 
In the base case of zero operators, the algebraic query expression is a single relation R on 
schema J,D or a constant relation.  We know from Ullman (1988) that this is translated into 
an equivalent relational predicate rX1,…,XmaxJ or a corresponding expression for the 
constant relation t1,…,tn on J,D with formula X1   t1D1 … XmaxJ  t1D maxJ 
… tnD1  … tnDmaxJ where there is a disjunct for each tuple ti.   
 
For a base relation R on J,D, we initialize the corresponding sets such that, for tuple t  R, tC 
 R and for every j, tSj  R, tIj  ∅.  Algebraically, then, for t  R: 
Comprehensive Attribution for a value tVj is tC  R for the expression DjσtR; 
Source attribution for a value tVj is tSj  R for the algebraic expression DjσtR; 
Relevant attribution for a value tVj is <tSj  tIj  R for DjσtR. 
 
The corresponding formula for the equivalent DRC is just rX1,…,XmaxJ so for tuple t  R, 
the comprehensive attribution for a value Xi  ci in t is the set of substitution lists 
c1/X1,…,cmaxJ/XmaxJ with no negated substitutions on the expression Xi | X1,…,Xi-
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1,Xi+1,…XmaxJ rX1,…,XmaxJ  X1  t1  … XmaxJ  tmaxJ.  Every substitution 
corresponds to the relation R, which is the attribution tC in the algebra. 
 
Likewise, the source substitution is just the substitutions in r corresponding to ci/Xi with no 
negated substitutions on the same expression as for comprehensive substitution.  But the 
source substitutions for ci/Xi correspond only to the relation R, which is the attribution tS  R 
in the attribution algebra. 
 
Finally, the relevant attribution in the base case is just the source substitution which 
corresponds to the algebraic definition tSj  tIj  R, and there are no negated predicates.  
Thus in the base case we confirm that the attribution algebra corresponds to the formal 
definitions of attribution. 
 
In the inductive case, as with the relationship between the algebra and the DRC, we consider 
algebraic expressions with n+1 operators. 
 

Lemma 5.5  Inductive case for comprehensive attribution 
Case R:  The DRC expression for the projection merely reassigns the set of free and 
bound variables in the formula for R so that a subset of the free variables in R are free in R 
and all others are bound.  The projection of domains K  J from scheme J,D so that the 
Comprehensive attribution for any tuple t'  R is  tC  t  R where tk  t'k for all k 
(e.g. the weak duplicates t'.  From the induction hypothesis we know that tC corresponds to 
the substitutions in the equivalent DRC expression.  The tuples t corresponding to a weak 
duplicate of t' are exactly those substitutions that agree in tk  t'k and make the expression 
for R true.  Therefore, any relation U in tC corresponds to some substitution for a weak 
duplicate in the DRC expression for R.  Thus we conclude, by the induction hypothesis, that 
the comprehensive attribution for a value in R corresponds to the formal definition. 
 
Case σR where R is defined on schema J,D:  Without loss of generality, we assume that 
the selection condition is a single theta comparison on a domain in the schema of R.  The 
algebraic comprehensive attribution for a value of t'  σR is simply tC'  tC for t  R and j, 
t'Vj  tVj.  Likewise, because t' simply denotes the substitutions that make the formula in 
the expression for R true in addition to making the  condition true, we know that the 
substitutions for t  R are the same substitutions for t'  R' so the algebraic definition 
corresponds to the formal model.  Moreover, if there were any other substitutions u  R such 
that u satisfies  and uV  t'V then tV  uV (or else R is not a relation).  Thus, we conclude that 
the comprehensive attribution for a value in σR as computed by the attribution algebra 
corresponds to the formal definition.  
 
Case R  S where R and S are union compatible in the standard sense):  For a value in a 
tuple t that appears only in R or only in S then certainly the algebra and the formal definitions 
agree given the induction hypothesis that they agreed in R and in S.  For a value in a tuple t'  
R and t'  S, the algebra will include t'C  from R  t'C from S.  Likewise, the formula in the 
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DRC is a disjunction R  S and will include the substitutions from R and S corresponding to t'.  
By the induction hypothesis, the substitutions in S correspond to t'C in S and the substitutions 
in R correspond to t'C  in R, therefore we conclude that the comprehensive attribution for a 
value in R  S as computed by the attribution algebra corresponds to the formal definition. 
 
Case R  S:  Where K from the select and then coalesce of R and S is empty, a value in a 
tuple t of R  S comes either from R or from S but not both.  If K is non-empty, then a value 
in a tuple t of R  S could come from just R, just S, or both.  However, regardless, the 
comprehensive attribution includes the relations in the comprehensive attribution of R and in 
the comprehensive attribution of S from the constituents for tuple t, r and s.  Moreover, we 
know that there can only be one such r  R and s  S or R and S would not be relations.  From 
the induction hypothesis, rC and sC correspond to the formal definition of the comprehensive 
attribution in R and S respectively.  Therefore, every possible substitution that could produce r 
is reflected in rC and likewise for sC.  Thus, though t may correspond to multiple permutations 
of disjunctions from the DRC for R and S, there are no permutations that are not captured in 
rC  sC, but this is the algebraic construction of the comprehensive attribution for a value in t 
 R  S.  Therefore, we conclude that the comprehensive attribution for a value in R  S as 
computed by the attribution algebra corresponds to the formal definition. 
 
Case (R  S where R and S are union compatible in the standard sense and where the subtree 
for S has no difference operators:  For a value in a tuple t of the difference where t  r  R 
and for which there is no s s.t. r  s  S, the attribution algebra will return rC sSsC.  Note 
than any nested difference operators in R are captured in rC while sSsC captures the 
intuition of comparing every tuple of S to verify r  S.  The corresponding DRC for R and S 
are formulas f and g in DNF so that R  S is f  g.  Distributing  g over the disjuncts of f 
gives f1  g  f2  g  …  fn  g.  For tuple t  r  R, rC  corresponds to the 
substitutions in f1 … fn such that t  r makes fi true by the induction hypothesis.  Likewise, 
sSsC corresponds to the set of all substitutions that makes g true.  Thus we conclude that 
the comprehensive attribution for a value in R  S as computed by the attribution algebra 
corresponds to the formal definition.   
 

Lemma 5.6  Inductive case for source attribution 
Case R:  Assume R is on scheme J,D for function p.  The DRC expression for the 
projection merely reassigns the set of free and bound variables in the formula for R so that a 
subset of the free variables in R are free in R and all others are bound.  From the induction 
hypothesis we know that tS  R corresponds to the source substitutions in the equivalent DRC 
expression.  The tuples t  R that produce the weak duplicate t'  R are exactly those 
substitutions that agree in tpj  t'j and make the DRC expression for R true.  Therefore, 
j, any relation U in the set tSj corresponds to some substitution for a weak duplicate in the 
DRC expression for R.  Thus we conclude, by the induction hypothesis, that the source 
attribution for a value in R corresponds to the formal definition. 
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Case σR where R is defined on schema J,D:  Without loss of generality, we assume that 
the selection condition is a single theta comparison on a domain in the schema of R.  The 
algebraic source attribution for a value of t'  σR is simply t'S  tS for t  R and j, t'Vj  
tVj.  Likewise, because t' simply denotes the substitutions for the free variables in the 
expression for R such that both R and and the  condition are true, we know that the 
substitutions for t  R are the same substitutions for t'  R' so the algebraic definition 
corresponds to the formal model.  Moreover, if there were any other substitutions u  R such 
that u satisfies  and uV  t'V then tV  uV (or else R is not a relation).  Thus, we conclude that 
the source attribution for a value in σR as computed by the attribution algebra corresponds 
to the formal definition.  
 
Case R  S where R and S are union compatible in the standard sense):  For a value in a 
tuple t that appears only in R or only in S then certainly the algebra and the formal definitions 
agree given the induction hypothesis that they agreed in R and in S.  For a value in a tuple t'  
R and t'  S, the algebra will include t'S   R  t'S  S.  Likewise, the formula in the DRC is a 
disjunction R  S and will include the substitutions from R and S corresponding to t'.  By the 
induction hypothesis, the substitutions in S correspond to t'S in S and the substitutions in R 
correspond to t'S  in R, therefore we conclude that the source attribution for a value in R  S as 
computed by the attribution algebra corresponds to the formal definition. 
 
Case R  S:  Where K from the select and then coalesce of R and S is empty, a value in a 
tuple t of R  S comes either from R or from S but not both.  If K is non-empty, then a value 
in a tuple t of R  S could come from just R, just S, or both.  Consider the case where the 
value in t, tVj comes from r  R or s  S but not both.  First, for any tuple t, we know that 
there can only be one such r and one such s.  From the induction hypothesis, if K is empty or 
the value does not come from D1k  D2k, then it is easy to see that tSj must either be 
equal to some rSj1 or some sSj2 where R and S are defined on J1,D1 and J2,D2 
respectively.  If the value does come from some D1k  D2k, then algebraically, we know 
that tSj  rSk  sSk.  In the equivalent formula of the DRC where K is non empty, we 
know that variable renaming and reordering results in multiple occurences of the same 
variable name in predicates of R and predicates of S.  But every substitution must correspond 
to predicates of R in rSk and a predicates of S in sSk and none others by the induction 
hypothesis.  Then the source substitutions in the formal model correspond to the algebraic 
source substitution and we conclude that the source attribution for a value in R  S as 
computed by the attribution algebra corresponds to the formal definition. 
 
Case (R  S where R and S are union compatible in the standard sense where the subtree for 
S has no difference operators:  For a value in a tuple t of the difference where t  r  R and 
for which there is no s s.t. r  s  S, the attribution algebra will return rS.  The corresponding 
DRC for R and S are formulas f and g in DNF so that R  S is f  g.  For tuple t  r  R, rS  
corresponds to the substitutions in f1 … fn such that t  r makes fi true by the induction 
hypothesis.  Likewise, the tuple t should not appear in any disjunct of g therefore no 
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substitutions of g should appear as a source for values of t.  Thus we conclude that the source 
attribution for a value in R  S as computed by the attribution algebra corresponds to the 
formal definition.   
 

Lemma 5.7  Inductive case for relevant attribution 
Case R:  In the algebra, we project the domains D2  D1 from schema J1,D1.  From the 
induction hypothesis, we know that for any tuple t  R, j, tSj  tIj returns the set of 
relation names that contain the substitutions returned by RelevantD1j in the DRC.  
Likewise, we know that the DRC for R simply reassigns the free and bound variables in 
the formula for the expression, which means that in the formal model, the expression is the 
same so RelevantD2j2  RelevantD1pj2.  Thus t'  R, the relevant substitutions 
in the DRC are the same as that for R corresponding to the algebraic definition where t'Sj2  
tSpj2 and t'Ij2  tIpj2.  Weak duplicates are simply those substitutions that agree in all 
of the values of j2 but not all the values of j1.  But the formal model is a set of substitutions, so 
for any instance corresponding to the free variables, the substitution is the set of all 
substitutions that make one instance true and is just the set of all weak duplicates.  In the 
algebra, this is the union of t'Sj2 and t'Ij2 over all t' that agree in the values t'Vj. 
 
Case σR where R is defined on schema J,D:  Without loss of generality, we assume that 
the selection condition is a binary theta comparison ,K on a domain in the schema of R.  As 
noted in the definitions earlier, for simplicity, we invoke a function RelevantK to return the 
same domain variables in the algebra as in the DRC expression.  Therefore, by the 
equivalence of RelevantX where X ranges over the domain variables in the DRC expression 
and RelevantDj, we see that the algebra begins with the initial relevant relations (induction 
hypothesis) and incorporates only those relations containing any domain variable X.  Hence, 
we conclude that for t'  R, j  J, the relevant attribution for t'Vj corresponds to the 
relevant substitutions for the set of free variables on the same domain Dj in the DRC.   
 
Case R  S where R and S are union compatible in the standard sense):  For a value in a 
tuple t that appears only in R or only in S then certainly the algebra and the formal definitions 
agree given the induction hypothesis that they agreed in R and in S.  For a value in a tuple t  
R and t  S, the algebra will combine tS  from R  tS from S and treat the tI sets similarly (see: 
weak duplicate elimination).  Likewise, the formula in the DRC is a disjunction R  S and 
will include the relevant substitutions from R and S corresponding to the free variables as they 
appear in relational predicates R and S.  By the induction hypothesis, the relevant substitutions 
in S correspond to tS  tI  in S and the substitutions in R correspond to tS  tI  in R, therefore 
we conclude that the relevant attribution for a value in R  S as computed by the attribution 
algebra corresponds to the formal definition. 
 
Case R  S:  As in other proofs for natural join, we rely here upon composition and the fact 
that natural join is defined as a Cartesian product followed by a selection, a coalesce, and a 
projection.  We show that the property holds for natural join with no join variables (Cartesian 
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product), and then rely upon the proofs for selection and projection shown earlier.29  Every 
tuple of R  S is comprised of a tuple t1  R and a t2  S.  From the induction hypothesis, we 
know that j, Relevant in t1 and Relevant in t2 contains the relations for the substitutions in 
the corresponding relational predicates of the DRC expression.  In concatenating a tuple of R 
and a tuple of S, certainly the property still holds.  Thus, we may continue to apply the 
induction hypothesis to the subsequent selection on equality and finally project out redundant 
attributes.30  
 
Case (R  S where R and S are union compatible in the standard sense where the subtree for 
S has no difference operators:  For a value tVj in a tuple t of the difference where t  r  R 
and for which there is no s s.t. r  s  S, the attribution algebra will return tSj  tIj where 
tIj  rIj  s  S sC.  In particular, every tuple s  S becomes relevant because it is used to 
verify that the instance tVj (defined as the tuple of R containing tVj) does not appear in S.  rI 
is how the substitutions from nested difference operators are carried forward.  In Section 4 we 
spoke of the additivity property in negation and we see the importance here.  We account for 
nested difference operators in the left hand side (minuend) of a difference operator by 
continuing to add to tI.  Thus we conclude that the relevant attribution for a value in R  S as 
computed by the attribution algebra corresponds to the formal definition.   
 
Hence from the base case and Lemmas 5.5 through 5.7, we conclude that when we do not 
allow nesting of difference operators in the left-hand side of a difference operator, the 
attribution algebra corresponds to the formal model.  
 
Particularly interesting about the limitations that we impose on the difference operator is that 
for such algebraic expressions, the corresponding DRC corresponds to the subset of DRC 
expressions for which composition holds.  Therefore, while the algebra constructs attribution 
inductively from the leaves of the query tree up to the root, we are equally assured that we can 
compose attribution by beginning at the root and drilling down to the base relations at the 
leaves.  

5.5 Summary 
In this Section, we have presented an extension to the relational algebra that inductively 
constructs the attribution for value-level result granules in an eager manner, as a part of query 
processing.  Mindful of the potential explosion in the amount of attribution metadata that such 
a process can create, the algebra manages source granules at the relation level.   
 
We first formalize the relationship between the standard relational algebra and the extended 
algebra.  Subject to some restrictions on the use of negation in query expressions, we then 

 
29 Note that because we use the function Relevant defined to match the formal model in our definition of 
extended select and then explicitly select on equality, the selection variables are by definition relevant to one 
another and thereby implicitly coalesce the relevant (intermediate) sets. 
30 The reader may recall that in proving the closure of the extended relational algebra, we verified that the result 
of a Cartesian product on extended relations is an extended relation. 
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establish that the attribution generated by the extended algebra does correspond to the formal 
definition as established in Section 4.  The relationship between the composition property of 
attribution and the inductive algebraic process suggests some interesting possibilities for 
deploying attribution as an accompaniment to a standard query processor or as an external, 
network service for lazy attribution processing.  Moreover, the parameterization of attribution 
characteristics in the algebra hints at the potential for incorporating either other types of 
metadata or more complex functions (e.g. data quality) of existing attribution characteristics.  
We return to these issues in the Conclusion.

 

 



   

6  Attribution and the Web 
We began this thesis by hypothesizing an imaginary on-line travel resource integrator that 
could answer queries not only based upon its own knowledge but also by possibly gathering 
and utilizing information from any number of unknown sources.  Such systems, however, are 
no longer hypothetical.  Integration, whether for travel, finance, healthcare, current events, 
etc. is now a trademark application of the World Wide Web.   

 
We saw in Section 1 how attribution may serve many different roles in data integration.  As a 
consequence, we identified several dimensions to describe the problem of attribution.  
Although our initial interest in this thesis stemmed from the Web, Web querying is an active 
research topic that has only recently begun to approach a uniform standard (Chamberlin et al. 
2001a; Fernandez and Marsh 2001).  Like the integration that it enables, the underlying theory 
of Web querying combines several intellectual disciplines including databases, information 
retrieval, and library science (deBakker and Widarto 2001; Katz 2001; Lenz 2001).  As a 
consequence, we simplified our task by casting the problem of attribution in the context of the 
relational data model.  We presented the formal model in Section 4. 
 
In this Section, we return to the Web.  Specifically, we consider how our formal model, 
developed in the context of the relational data model, relates to the semistructured data model 
of the World Wide Web.  We begin with a very brief overview of some general, 
semistructured data concepts.  Next, we consider how our attribution intuitions from Section 3 
relate to the semistructured space.  Finally, we consider limitations of applying our formal 
model of attribution to the Web, referring the reader to work by Buneman et al (2001; 1998; 
2000; 2001) on attribution (provenance) for semistructured data. 

6.1 Semistructured data models 
Research on semistructured data is often confused with evolution of the Web.  However, the 
challenge of data integration existed long before the Web.  Current work on semistructured 
data borrows from portions of the database literature that is often implicitly associated with 
Web querying:  Tsimmis, LORE, Infomaster, Information Manifold (Abiteboul et al. 1997; 
Chawathe et al. 1994; Duschka and Genesereth 1997a; Duschka and Genesereth 1997b; Levy, 
Rajaraman, and Ordille 1996).  Despite their clear applicability to data on the Web, however, 
these works were all pursued in the general context of data integration.  Indeed, from a data 
integration perspective, the Web has represented a working infrastructure that simultaneously 
emphasized the need for and provided a testbed for research on integration and semistructured 
data (Buneman 1997) (Florescu, Levy, and Mendelzon 1998).  In the past five to ten years, 
interest in and research on semistructured data has exploded.  Our goal here is not to 
summarize the field.  Others have covered the foundations (Abiteboul, Buneman, and Suciu 
2000).  Our goal, instead, is to touch on enough of the basic principles to inform a discussion 
of how attribution principles might apply in a semistructured environment.    

6.1.1 Semistructured data representation 

Research in semistructured data models is driven, in no small part, by the observation that 
data in the "real world" seldom conforms to the well-behaved assumptions that underlie the 
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relational data model.  In particular, while data may often be arranged to have the same 
appearance, the underlying structure or schemas can differ significantly.  Consider, for 
example, the Travel Resource Integrator from Section 1.  The travel examples used 
throughout Part 1 of this thesis draw data from a number of on-line, Web-accessible travel 
guides.  As indicated in Figure 6.1, our initial intuition was to model the data from these Web 
travel guides as the relations of Section 3. 

81-3-3267-400081-3-3235-1107Iidabashi

81-3-3467-941781-3-3467-0163Sangubashi

FAXPHONESTATIONPRICE 
3000 
3100 

jyh 
HNAME 

Tokyo Yoyogi 
Tokyo International 

34000

25000

15000Ginza Dai-Ichi

20000Asakusa View

18000

HNAME ROOM 
hotels

single 
double 
single 
double 
single 

Asakusa View

PRICE

Figure 6.1  The Web as a relation 
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Upon closer inspection, however, it quickly becomes apparent that the relational perenity 
which we assumed in Section 3 breaks down.  Consider the Web guide "The Hotel Guide" 
from which we populated the relation table "hotels" (hotelguide.com 2001).  We include 
one page of hotels in Tokyo, Japan from hotelguide.com in Figure 6.2.  Aside from the fact 
that there are a number of hotels that we omitted simply for tractability reasons, we quickly 
notice that there are some inconsistencies.  Not all hotel listings match the entry for the  

Figure 6.2  Hotels in Tokyo, Japan found in www.hotelguide.com 
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"Asakusa View Hotel".  Some entries, like the "Clarion Hotel" may not quote a price for doubles.  
Others, like the "Hotel Takanawa" may actually indicate a range of prices by listing two values 
for a "single".  Were the hotelguide.com to treat hotel entries as tuples in a relation, the schema 
might include the union of all schema elements and set missing values to NULL.  Rather than 
treat these values as explicitly NULL, they are instead simply non-existent.  There are 
certainly other ways in which data on the Web does not conform to the relational model 
(Florescu, Levy, and Mendelzon 1998).  However, our goal here is to motivate the "schema-
less" or "self-describing" property that is characteristic of all semistructured data models. 
 
Though there are multiple approaches to semistructured data representations, a common 
theme in the different representations is an explicit rendering of label-value pairs as a 
generalization of the "attribute-value" pairs in relations.  By explicitly encoding every value 
with a label, semistructured data models carry structure as a part of the data rather than 
associating tuples (lists of values) with some external schema that conveys structure and 
meaning. 
 
The concept of self-describing data is perhaps most easily conveyed in a tree or graph.  In this 
overview, we follow the literature by describing the basic model as an edge-labeled graph 
where edges one of two categories of information.  First, edges may contain typed-data 
commonly associated with the values in the attribute-value parlance of the relational data 
model.  Second, edges may contain names or scalars that are colloquially associated 7with the 
"attribute" of an attribute-value pair.   
 
In Figure 6.3, we suggest a semistructured model for two hotel entries from hotelguide.com.  
The reader should notice how every label or edge is associated with a value where the value 
may be a data value or a node denoting a set of label value pairs.   
 
Although not depicted here, the basic model for semistructured data allows for the explicit 
association of a unique identifier with a node in the graph.  Object identity provides a 
convenient mechanism for extending tree-structures, such as those depicted in Figure 6.3, into 
a graph.31  The reader may also notice that in our example, there are no values on internal 
edges.  Though not necessary, the basic model does not allow values on internal edges.  
Whether values are assigned to nodes versus edges and whether values are allowed on internal 
nodes or edges are all variations on the basic model.32 
 
Following (Abiteboul, Buneman, and Suciu 2000), we can serialize our graph using the 
following grammar.  If s is a semistructured data expression and oid is an object identifier that 
names a node from which edge(s) depart: 

 
31 Our existing hotel data might not provide the best opportunity for demonstrating graph extensions.  The reader 
is encouraged to refer to (Abiteboul, Buneman, and Suciu 2000) for examples.  The reader may also be familiar 
with the use of IDREF in XML to serve a similar function (Bray, Paoli, and Sperberg-McQueen 1997). 
32 The reader is encouraged to see (Abiteboul, Buneman, and Suciu 2000) for a discussion of these variations.   
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 <s>   <value> | oid <value> | oid 
 <value>  atomic value | <complex value> 
 <complex value>  label: <s>,…, label: <s> 

hotel

name rate rate

room price room price

"single 18000 "double

"Asakusa View 
Hotel" 

20000 

price 

hotel

name rate

price

rate

room price room price

39000 5600034000 "double"single

"Imperial 

61000

Figure 6.3  Semistructured data from www.hotelguide.com 

Example 6.1  Serializing a graph 
If we follow convention and name oids using ampersands (e.g. &o1), we can serialize Figure 
6.3 as follows: 
 
{hotel:  &o1{name:  &o2"Asakusa View", 
             rate:  &o3{room:  &o4 "single", 
                        price: &o5 18000} 
             rate:  &o6{room:  &o7 "double", 
                        price: &o8 20000} 
            }, 
… 
 hotel:  {name:  "Imperial Hotel", 
             rate:  {room:  "single", 
                     price:  34000, 
                     price:  56000} 
             rate:  {room:  "double", 
                     price:  39000, 
                     price:  61000} 
            }, 
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  … 
}   
 
In our serialization of Figure 6.3, we deliberately omitted object identifiers from the second 
hotel listing.  We did so to emphasize the characteristic that, like object-oriented models in 
general, the basic semistructured data model supports node identity.  The model allows for the 
explicit assignment of a unique identifier to a node.  In the absence of assignment, every node 
has an implicit identifier to establish the uniqueness used in data processing.  

6.1.2 Semistructured data manipulation  

Query languages serve two fundamental objectives:  selection (to avoid confusion with the 
relational select σ operator, we may also use the term "extraction") and presentation.  A 
relational query operator takes one or more relations, each of which is defined on a schema, 
and extracts some subset of tuples.  A new relation is constructed from the extracts.  
Similarly, operators to manipulate semistructured data take, as arguments, the nodes and 
edges that constitute one or more graphs.  After extracting some subset of nodes (and edges), 
a semistructured operator constructs a new graph.  Just as there are different relational query 
languages, there are different semistructured query languages.  In this subsection, we focus on 
a few shared concepts for selecting and presenting semistructured data.   

6.1.2.1 Data extraction 
All semistructured query languages support an elementary form of extraction based upon path 
expressions.  Path expressions are the basic construct with which semistructured query 
languages specify nodes in a graph.  A path is a well-understood concept from graph theory, 
but we can define a path on semistructured data informally as a sequence of edges between 
two nodes.  The path expression /l1/l2/…/ln/lb denotes a path from node a to node b if the graph 
contains nodes x1…xn and edges such that a l1 x1, x1 l2 x2,…, xn lb b  (Abiteboul, 
Buneman, and Suciu 2000).  We may then think of a path expression as a query constructor.  
The result of a path expression applied to a graph is the set of all nodes b for which there are 
edges l1, l2, … ln, lb from a to b.   
 

Example 6.2 Path expressions 
For example, the path expression /hotel/name applied to the graph of Example 6.1 returns 
the set of nodes for the edges "Imperial Hotel", "Asakusa View", etc.  
 
The path expression /hotel/rate/price returns the set of nodes for the edges 18000, 20000, 
34000, 56000, 39000, 61000, etc.   
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Path expressions are richer than a sequence of labels, however.  By applying regular 
expressions on the alphabet of edge labels, we expand the paths denoted by (and hence the set 
of nodes returned by) a single path expression.   
 

Example 6.3 Regular expressions in path expressions 
Following the regular expression syntax in Perl, we may write the following path expression:  
/(hotel|hostel)/*/price.  Certainly the path:  /hotel/rate/price matches the pattern 
of the path expression; among others, the path expression returns the set of nodes for all hotel 
prices from Figure 6.3.  We could also imagine integrating data from the jyh relation with 
data from www.hotelguide.com by expanding the graph of Figure 6.3 with hostel edges of the 
form seen in Figure 6.4.  Now our path expression also matches the path 
/hostel/charge/member/price.  The set of nodes returned by the original path expression 
now also includes nodes associated with hostel prices.    

hostel

name 
contact

charge

5000 

price 

member 

"Mr. 

"81-3-3875-4411"

"81-3-3875-4411" 

manager

faxphone

"Asakusa 
Station"

station

"Sky Court  
Asakusa YGH"

Figure 6.4  Representing hostel Web data in a graph 

6.1.2.2 Data presentation 
While path expressions return a set of nodes, as a query language, path expressions are 
incomplete.  Path expressions can extract, but a set of nodes does not by itself constitute a 
graph.33  We need tools to control presentation (i.e. construct a graph from the nodes in the 
result of a path expression).  The use of variables, in conjunction with path expressions, 
supports presentation.  The result of a path expression is assigned to a variable.   These 
variables are used in the specification of an output path.  The output path is a template for the 
graph of the result of a path expression.  In the same way, the "select" clause of an SQL 
statement defines the schema of the result.  Variables and path expressions together complete 
the basic elements of a semistructured query language.   Details of explicit query syntax may 

 

 
33 The closure property suggests that, given graphs on inputs, the query language returns a graph. 
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vary among specific semistructured query languages, but the roles served by variables and 
path expressions are roughly the same.  
 

Example 6.4  Constructing the result graph of a semistructured query 
We use the same path expression as before to extract possible prices for lodging in and around 
Tokyo, Japan except now we assign node instances to the variable X:  
/(hotel|hostel)/*/price X.  Now we build a path as a template for the output of the path 
expression:  /lodging/price/X.  This path corresponds to the graph of Figure 6.5.    

lodging

56000 

price

lodging

6100 5000 34000 3900

pricepricepriceprice

…lodging

lodging 

lodging

Figure 6.5  Semistructured query result 

6.1.2.3 Extending data manipulation capabilities 
While path expressions and variables provide the basic infrastructure for a rudimentary, 
semistructured query language, these tools also support much richer classes of queries.  With 
variable assignment, semistructured languages can support -comparisons to further restrict 
the subset of nodes extracted.  Through variable assignments and nested queries, we can 
support complex graph restructuring. 
 

Example 6.5 -comparisons and graph restructuring in semistructured queries 
Our query might first consider each hotel or hostel separately.  
 /(hotel|hostel)/ X 
A "for-each" conjunction of conditions on every X nests one query within another.  For each 
hotel or hostel node, we assign the name to Y and the price to Z. 
 /X/name Y 
 /X/*/price Z 
We can apply a boolean test on prices to further restrict nodes in the result graph. 
 Z < 35,000 
We then use our variables to define a path as a template for the result graph. 
 /Y/price/Z 

The final result graph is depicted in Figure 6.6.    
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In introducing semistructured data manipulation, we have deliberately left out many details 
that we feel are less germane to attribution.  Most semi-structured query languages use SQL-
like select-from-where syntax and some familiar notation for expressing regular 
expressions on paths.34  In addition, we can apply regular expressions on labels themselves.  
For example the conjunction of two path expressions /(hotel|hostel) X and 
/X/name/"A*"  represent a pattern to get all lodging nodes with names beginning with the 
letter "A."  Other issues involve duplicate management in the face of object identity and the 
type coercion required to perform -comparisons on edge labels or restructure graphs using 
internal edge labels as values and vice versa. The reader is encouraged to consult other 
sources on the subject (Abiteboul 1997; Abiteboul, Buneman, and Suciu 2000; Abiteboul et 
al. 1997; Abiteboul and Vianu 1997; Buneman 1997; Buneman et al. 1997; Buneman, 
Deutsch, and Tan 1998; Chawathe, Abiteboul, and Widom 1999; Fernandez et al. 1997a; 
Fernandez et al. 1997b; Lenz 2001).35 

5000 20000 18000 34000

price priceprice price 

……"Sky Court  
Asakusa YGH"

"Asakusa View 
Hotel" 

"Asakusa View 
Hotel" "Imperial 

Hotel" 

 
Figure 6.6  Nested queries and complex restructuring 

6.2  Attribution intuitions and semistructured data 
Having introduced some of the basic principles of semistructured data representation and 
manipulation, we next consider how some of our attribution intuitions apply to the 
semistructured context.  While the relationship between attribution in the different models is 
imperfect, in this first section, we consider only how the intuitions do match.  In the following 
section we raise some of the complications.   
 

 
34 Familiar notations for paths include "." or "/" separators.  Regular expression symbols include "*" for zero or 
more, "?" for zero or one, "+" for one or more, etc. 
35 We intentionally steered away from explicit reference to XQuery, XPath, and other rapidly evolving World 
Wide Web Consortium (W3C) standards for querying XML.  We did so first to avoid the popular misconception 
that XML queries are synonymous with rather than simply one (albeit prominent) example of semistructured 
querying.  Second the W3C standards were evolving too rapidly for us to consistently track in this document.  
We do include references to the W3C work both in the in-text citations above and in the References.   
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Our general intuition in the formal model of attribution was of substitutions that make an 
expression true.  If we think of a semistructured query as a conjunction of path expressions, 
the analogy seems simple enough.  The attribution for a semistructured query constitutes the 
subgraphs that match a particular pattern corresponding to the nodes in a result graph.   
 

Example 6.6  Subgraphs that match a particular pattern 
In Example 6.3, we gave the following path expression: /(hotel|hostel)/*/price.  Based 
upon our sample data from Figures 6.3 and 6.4, we know that the following paths all match 
the pattern: 
/hotel/rate/price for the nodes with: 
/hotel/name/"Asakusa View" and /hotel/rate/price/18000; 
/hotel/name/"Asakusa View" and /hotel/rate/price/20000; 
/hotel/name/"Imperial Hotel" and /hotel/rate/price/34000; 
/hotel/name/"Imperial Hotel" and /hotel/rate/price/56000; 
/hotel/name/"Imperial Hotel" and /hotel/rate/price/39000; 
/hotel/name/"Imperial Hotel" and /hotel/rate/price/61000; 
and 
/hostel/charge/member/price for the node with  
/hostel/name/"Sky Court Asakusa YGH" and /hostel/charge/member/price/5000 
  
 
In the formal model, we explored different categories of equivalences.  For the concept of 
strict equivalence, the difference between object-identity and value-equivalence introduces a 
slight inconsistency, but even with object-identity, we can imagine multiple paths in a graph 
to the same node.   
 

Example 6.7  Strict equivalence:  multiple paths to the same node in a graph 
For example, suppose two different youth hostels shared the same manager.  We illustrate 
such a possibility in Figure 6.7.    
 
The potential for cycles in a graph, of course, will also result in multiple paths to the same 
node.  In the formal model we encountered a related problem posed by the potential 
introduction of redundant conjuncts.  The relational calculus has the concept of a minimal 
query and the question of a minimal path is an open question that we raise as a challenge 
below and direct the reader to external references (Abiteboul, Hull, and Vianu 1995). 
 
Equivalence through composition is a second category of equivalence.  In the formal model, 
attribution composition stems from query composition (i.e. using the result of one query as 
the input to another as in IDB)  The principle behind attribution composition is to recursively 
construct attribution in a step-wise fashion rather than to unfold the entire query a'priori or to 
carry metadata attribution forward with each value, updating with every additional operator.   
 
Query and attribution composition has particular relevance for semistructured data and the 
Web in particular.  Querying against one or more graphs returns a new graph that itself can 
serve as a source for a new path expression.  Web portals and other aggregation engines serve 
in this very manner.  In Section 1, we recounted the lawsuit between Priceman and MySimon.  
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We may characterize a page in MySimon as the result of query that itself became a source for 
Priceman.  Analogously, we may compose attribution in a stepwise fashion.   

hostel 

name contact 

manager

faxphone

�contact name � 

hostel

"Mr. 

manager

fax phone 

Figure 6.7  Strict equivalence in semistructured data 

Example 6.8  Attribution composition for semistructured data 
From our Travel Resource Integrator of Section 1, we could imagine attributing the result of a 
query on Tokyo sites to sources including www.hotelguide.com and www.jyh.com.  We could 
equally imagine that these sites might in turn aggregate information from additional sources.  
Perhaps we might attribute the "Asakusa View Hotel" in www.hotelguide.com and discover 
that the listing was itself extracted from a RoughGuides travel guide as in Figure 6.8.36    
 
Finally, we consider our observations from Section 4 on coarse- and fine-grained source and 
result granularity.  Our intuition for result granularity was the thought of rolling-up attribution 
from a value to its identifying tuple or to its domain.  Likewise, a domain or a tuple may share 
attribution characteristics with the containing relation.  Attribution at a higher level of result 
granularity aggregates the attribution for each constituent.  Source granularity combines our 
ideas about result granularity and composition.  Recognizing that a result granule associates 
attribution with some subset of values, and that the result granule can itself constitute a source 
for a composed query, we arrive at the concept of a source granule.  Rather than attributing 
from substitutions in a source relation, we might attribute to source tuples or source relations.   
 
In Example 6.5, we saw how we could use a path expression to reference an internal node.  As 
with our example, at least some semistructured query languages use references to internal 
nodes as a form of syntactic sugar for nesting queries on the independently named sub-
elements (Abiteboul, Buneman, and Suciu 2000).  Accordingly, we might envision using this  

 

 
36 hotelguide.com does not indicate that it uses Baedekker's as an external reference and we use the example 
here merely to illustrate the concept of query and then attribution composition.   
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notation to associate attribution with some internal node, implicitly referencing the subgraph 
rooted at the internal node.  Attribution to an internal node would correspond to the idea that 
coarse granularity captures the attribution for each constituent.  Moreover, because path 
expressions constitute query selection constructors, we can think of specifying arbitrary 
granules with query expressions.  Colloquially, we can talk about attributing parts of a Web 
page rather than the page en masse as in a bibliography or individual items as in a footnote.  
Indeed it was because of observations about granules in semistructured data that we sought an 
analogy in the relational context.   

Rough Guides 

Travel Resource Integrator:  

Ginza Dai-Ichi 

Imperial 
Tokyo Yoyogi 
Tokyo International 
Sky Court Asakusa 

HNAME 
Asakusa View 

HotelGuide.com (hotels)

Japan Youth Hostel Association (jyh)

Figure 6.8  Attribution composition in semistructured queries 

Example 6.9  Granularity for semistructured data attribution 
Referring again to Figure 6.8, we indicate how a result may be separated into different 
granules.  Hotel information comes only from HotelGuide.com and likewise for hostel 
information.  Similarly, we may not have used all of the information from HotelGuide.com, 
so we can separate their data into source granules.  If information about a hostel's address 
information comes from a different place than pricing and management information, then we 
may think of each source as the result of a query on some other source and attribute 
accordingly.    
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6.3 Challenges for attributing the Web 
While many of our intuitions appear to map in a straightforward manner to the Web, there are 
a number of confounding factors that make attribution on the Web a challenge in its own 
right.  First and foremost is the recognition that the Web itself does not conform to our basic, 
semistructured data representation.  As a consequence, we separate our discussion of 
challenges first into issues posed by semistructured data in general and then Web specific 
concerns. 

6.3.1 Challenges attributing semistructured data 

First, we note that in the formal model, attribution is modeled as external metadata set apart 
from data domains and relations on domains.  Accordingly, in the algebra, we extended the 
data model by associating metadata with values and tuples (Sadri 1991) rather than 
incorporating attribution metadata explicitly into the relational schema (Dey, Barron, and 
Storey 1996; Dey and Sarkar 1996).  In the semistructured context, it is easy to see how 
attribution could emerge as a metdata graph rooted to every node in the data graph through an 
"attribution label."  Changes in query semantics as well as implications for a data 
representation that essentially duplicates paths in the graph need further thought. 
 
Second, our intuitions about query composition and attribution composition, while analogous 
to their relational counterparts in the abstract, suffer from some difficulties in the details.  In 
the formal model, the attribution for a composed query is defined by the attribution for the 
unfolded calculus expression.  However, it is not clear that there is an equivalent for unifying 
two semistructured path expressions.  Consider the case where one expression is a restriction 
and restructuring of the same graph (i.e. using the same nodes and labels).   
 
A related problem, alluded to earlier, is the issue of recursive queries.  Given a finite graph to 
begin with, we know that a path expression on a finite graph, recursive or otherwise, must 
return a finite set of nodes.  However, the explicit paths that we can associate with the path 
expression for any given node, in the presence of a cycle, can be (countably) infinite.  While 
there has been recent work on recursive queries in semistructured data (Abiteboul, Buneman, 
and Suciu 2000), finding a corresponding resolution for attribution will require some 
additional consideration.   
 
Finally, graph reconstruction also poses a problem for our intuitions about granularity and 
aggregating attribution over subgraphs.  Because variable assignment allows unrestricted 
(re)use of a given node (label) in structuring a result graph, there is no necessary dependency 
between the attribution of a node and the attribution of its children in a graph.  For example, 
we could imagine constructing a result graph that associates hostel prices with hotel nodes.  
The attribution of the hotel node would have no bearing on the attribution of the hostel prices.   

6.3.2 Challenges attributing the Web 

Other challenges derive from the nature of the Web itself and the recognition that data on the 
Web today does not correspond neatly to any formal semistructured model.  First, we know 
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that the relational data model is value oriented.  Every tuple instance is unique by definition.  
As noted earlier, in semistructured data, object identity causes value-oriented uniqueness  to 
break down.  On its own, this does not pose a problem, as the concept of identical values with 
different attribution appears in the formal model.  A related problem that does emerge, 
however, is the question of duplicates.  More generally, reflecting the Web's document-centric 
history, every node is represented (no weak duplicates), and order matters (Bray, Paoli, and 
Sperberg-McQueen 1997).37  The need to reference order, both for querying and attributing, 
requires richer concepts.38 
 
Apart from label order, the labels themselves pose some difficulty for being able to construct 
precise paths.  Although standards for XML, in conjunction with XSL and Style Sheets, are 
evolving to address issues of meaningful, content-based labels, the Web today is dominated 
by HTML (Chamberlin et al. 2001b; Clark and DeRose 2001; Fernandez and Marsh 2001; 
Fernandez and Robie 2001; Grosso and Walsh 2000; Raggett 2000).  Without special 
knowledge, then, there is a limit to the data that we can extract and attribute.  Consider again 
hotelguide.com and their Web page on Tokyo hotels in Figure 6.2.  While we hypothesized a 
semistructured representation in Figure 6.3, the data on the page really appears as the HTML 
that appears (in a slightly abbreviated form) in Example 6.10. 
 

Example 6.10  HTML for hotelguide.com  
A vision for the very near future of the Web calls for servers that return XML pages 
associated with style sheets to control presentation (Bray, Paoli, and Sperberg-McQueen 
1997).  Today, however, most sites, like hotelguide.com, still present HTML.  Excerpted below 
is edited source from the page for Figure 6.2. 
 
<body> 
   <table width="100%" cellpadding="0" cellspacing="0" border="0">   
   <tr>  
      <font class="hotellist"><b> 
      <a href="/html/searchengine/"> 
         ASAKUSA VIEW HOTEL  
      </a></b>   
 </tr>  
   <tr>  
      <td width=32% valign="top">  
         <font class="hotellist"><font size="1"> 
            3-17-1 NISHI-ASAKUSA, TAITOU-KU 
         </font></font>  
      </td>  
      <td width=24%>  
         <font class="hotellistsmall">  

 
37 The Web (and HTML in particular) was originally conceived as a tool for sharing research literature.  As a 
consequence, particular attention was directed towards formatting and presentation.  So while an academic paper 
is, abstractly, composed of different sections, we might wish to ensure that "Section 6 Data analysis" comes after 
"Section 1 Introduction."  Notice that our graph-based basic semistructured representation has no provisions for 
explicitly stating that one node or label is first in a sequence.     
38 The reader may note that the problem is not "duplicates" per say but rather one of "order."  We merely use 
duplicates as an example of the need to define explicit order.   
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            single   
        &nbsp; 
        <a href="JavaScript: newWindow=currencyconverter"> 
           18000                           
            </a>&nbsp; 
        JPY 
     </font> 
         <br>  
         <font class="hotellistsmall">  
            double   
        &nbsp; 
        <a href="JavaScript: newWindow=currencyconverter"> 
           20000 
            </a>&nbsp; 
        JPY 
     </font>  
      </td>  
   </tr>  
</table>  
&nbsp; 

…    
 
In HTML, the tags (labels) are structure-based rather than content-based.  As a consequence, 
in writing a path to access particular items of data in HTML, we are forced to make certain 
assumptions about the order of fields as well as the data that we will find in those fields (Firat, 
Madnick, and Siegel 2000; Mendelzon, Mihaila, and Milo 1996).   
 
We have continued to refer to www.hotelguide.com as a source, but in truth, the problem of 
identifying a source on the Web becomes much more complex than a relation name.  URLs 
are clearly inadequate because of the temporal nature of data on the Web.  Sites hosting 
dynamic content such as news or financial information are constantly changing.  Even a URL 
with a path expression that specifies order may not suffice to concretely specify a distinct 
value or its associated attribution path.  If we reference a granule by a path, does the path 
similarly name a source?  In this case, a named source can contain a second source perhaps 
presenting a refined case of composition.  (Buneman et al. 1997) has studied aspects of this 
problem in the context of keys for semistructured data, but the continual challenge will be to 
extend conclusions to the ad-hoc Web.   
 
Other such pragmatic problems related to the ad-hoc nature of the Web and naming have to 
do with duplicate sites and whether replicas or mirrors are treated as distinct sources or the 
same source.  Versioning and the temporal nature of the Web in general will also pose 
problems for attribution.   
 
The Web today almost certainly foreshadows the future of data management.  If nothing else, 
the metaphors carried from the print and publishing world onto the Web will continue in some 
form tomorrow.  Meanwhile, as the Web continues to expand, incorporating ever more data, 
so to does the need for attribution as a mechanism for managing that growth, whether for 
search, intellectual property, or evaluating quality.  For this reason, extending formal models 
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of attribution (Cui, Widom, and Wiener 1997 (revised 1999); Motro 1996; Rosenthal and 
Sciore 1999; Sadri 1991; Wang and Madnick 1990) into the semistructured environment is the 
logical direction to look.  The work by Buneman et al. is a terrific start (Buneman, Deutsch, 
and Tan 1998; Buneman, Khanna, and Tan 2000; 2001; Buneman, Tajima, and Tan 2001). 

 

 





  

7  Conclusion 
 
In this thesis excerpt, we explored technologies for addressing attribution in the context of data 
integration.  While data integration is not new, modern information technologies in general and 
the World Wide Web in particular have made data integration an everyday phenomenon.  Web 
portals, comparison sites, personalized pages, and other examples of on-line integration 
exacerbate tensions about data quality, intellectual property, and data organization.   
 
In this thesis excerpt, we focus on a technology-oriented approach to the questions of what and 
where.  We first present a formal model of attribution that represents what as a query result and 
where as query inputs.  Although our initial interest was sparked by data integration on the 
Web, we construct our model in terms of the well-understood, logical foundations of the 
domain relational calculus.  Then, beginning with conjunctive queries, we define and evaluate 
properties of attribution for several different classes of queries.  We consider conjunctive 
queries, conjunctive queries with -comparisons (excluding explicit equality), add explicit 
equality, add union, and finally add negation.   
 
While the domain relational calculus offers a useful framework for developing our model, the 
definitions are not easily implemented.  Consequently, we present an extended relational 
algebra for attribution.  The extended algebra manages attribution in an inductive fashion.  
Metadata for specifying comprehensive, source, and relevant attribution is associated with 
every value in a relation; the metadata is updated and carried forward with every successive 
query operation.  After showing some properties relating the extended algebra to the standard 
relational algebra, we verify that the attribution returned by the algebra corresponds to the 
attribution defined by the formal model for the same query.   
 
Although our initial interest in attribution stems from the phenomenon of data integration that 
pervades the Web, we develop our model of attribution in the simpler but more well-
understood framework of the relational data model.  We conclude Part one of this thesis by 
returning to the semistructured data models that underlie the Web.  We specify some general 
principles of semistructured data representation and manipulation and then discuss how our 
attribution intuitions might map onto this semistructured framework.   
 

7.1 Contributions 
As noted in Section 2, the problem of attribution has been addressed from a technology 
perspective as well as a policy perspective many times before.  Some of the prior work has 
focused on domain specific applications (e.g. geographic information systems (Lanter 1991; 
Woodruff and Stonebraker 1997)) and others have focused on general models.  More recently, 
Buneman et al. (2001) has even developed a formal model for attribution in a semistructured 
framework.  However, we feel that ours is the first to present the problem in a single 
framework, the dimensions of the attribution problem space, that articulates the relationship 
between different technology and policy approaches.  In addition, we believe that this thesis 
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does provide a number of contributions to both the existing technology literature and the 
existing policy literature. 
 
The formal model defines three different attribution types.  Comprehensive attribution refers to 
all query inputs.  Source attribution refers to the specific inputs in which a specific value 
appears.39  Relevant attribution asks which query inputs are used to define constraints or 
restriction conditions on a value of the query result.   
 
We define several properties of attribution and provide a comprehensive analysis of these 
properties, covering each type of attribution for the full range of relationally complete 
expressions.  We show that strict equivalence for source attribution breaks down under strict 
equality and that strict equivalence breaks down for all types of attribution upon introduction of 
union.  Attribution composition is particularly useful because it demonstrates that attribution 
can be constructed inductively and carried forward with the query processing as well as drilled 
backwards in a step-wise fashion.  We show that composition holds for all classes of queries 
through limited forms of negation and characterize those limited forms of negation.   
 
Recognizing that we might wish to specify results or sources with varying degrees of precision, 
we introduce the notion of granularity to attribution.  Granularity leverages the equivalence 
property of composition.  Attribution is defined for a query result; result granularity attributes a 
specific subset of values in a result (what data is taken) by attributing a composed query that 
selects the desired values from the initial query result.  Because a result granule can itself serve 
as a source for a composed query, we note the parallel concept of source granularity for 
specifying a subset of source values (where the data comes from). 
 
While ours is not the first extended algebra to address attribution (Motro 1996; Sadri 1991; 
Wang and Madnick 1990), we prove a number of properties that are left unspoken in earlier 
work.  Relating the extended algebra to the standard relational algebra, we prove that the 
extended algebra is closed and that it reduces to the standard algebra.   
 
More significantly, our development of a formal model allows us to prove a number of 
properties not declared in other models.  By defining attribution independently of the algebraic 
definition, we can show that the attribution algebra is a consistent extension of the standard 
algebra (Dey, Barron, and Storey 1996; Dey and Sarkar 1996).  Finally, rather than defining the 
extended algebra and then simply stating that attribution is defined as whatever the algebra 
returns, we show that the algebraic attribution for a value in a query result corresponds to the 
formal model.  The formal model allows us to express what is meant by attribution as well as 
some of its properties.  The algebra provides a direct implementation of that model.   
 

 
39 For any given value (what) in a query result, the source attribution identifies the specific query inputs (where) 
from which the value in the result is drawn.   
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7.2 Limitations and future work   
While this thesis has attempted to cover a great deal of ground, it has also made a number of 
assumptions and left many issues un-addressed.  In this final section, we consider opportunities 
for future work.   
 
In terms of the formal model, there are a number of opportunities for further work within the 
existing model and for expanding the current model.  In this thesis, granularity is mentioned 
only as an observation.  We need to define granularity formally and define the relationship 
between attribution for the same query at different levels of granularity.  Just as we speculate 
on converting between different granules, we might speculate on converting between different 
types of attribution.  Finally, attribution refers to the substitutions for unique instances of values 
in tuples.  Therefore, we should consider the role of functional dependencies.     
 
We might also extend the model in at least two directions.  First, we should consider whether 
the formal model can embrace a richer class of queries.  The work on data lineage, for example, 
has extended to aggregation functions and more general classes of functions (Cui, Widom, and 
Wiener 1997 (revised 1999)).  Second, we would like to consider parameterizing the model.  
Perhaps we could insert specific quality metrics or other measures that are a function of data 
attribution.  (Rosenthal and Sciore 1999), for example, speak of the access constraints on 
integrated query results. 
 
In considering the algebra, we first must find an algebraic definition for relevant variables that 
corresponds to the formal model.  We found syntactic rules that captured a superset of the 
relevant variables, but had trouble defining a simple function that would support the formal 
definition.  
 
We would also like to consider the eager, algebraic manipulation of attribution to manage 
aggregations or other more general classes of functions.  Note that the Stanford work addresses 
the problem in a lazy manner.  In addition, we could consider parameterizing the algebra to 
manage attribution-related metrics.  Moreover, we might wish to explore whether the extended 
algebra is appropriate for managing other types of metadata such as that used experimental data 
collection (e.g. experimental apparatus, conditions under which the data was collected, etc.)     
 
Extending the formal model to a semistructured data representation is also needed.  As noted in 
Section 6, there are a host of considerations.  Naming is a problem.  As we commented earlier, 
how do we reference a source given that URLs are inadequate?40  A second problem is the 
management of query composition and granularity.  How do we frame these issues in an 
environment that allows graph restructuring?41  
 
While the current thesis focuses on the theory, there is a great deal of opportunity in 
implementation.  An initial algebraic prototype is described in (Lee, Bressan, and Madnick 
                                                 
40 In Section 6, we observed that the temporal nature of data on the Web as well as dynamic Web sites and 
personalization (e.g. Web site as modified based upon cookies) can all affect the content referenced by a URL). 
41 As noted in Section 6, the formal model leverages the value-oriented characteristic of the relational data model.  
In semistructured data, however, different paths (i.e. different structure) can return the same values from the same 
domains.   
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1997).  In the prototype, attribution is calculated in an eager manner and carried forward with 
every value.  We would also like to implement the algorithm for attribution composition and 
explore attribution composition as a hybrid lazy-eager approach.  Only one step of the 
attribution is calculated and propagated while enabling a step-wise backwards trace.  In the 
context of the Web, we might consider an attribution Web service to support attribution tracing 
between integrated query results.   
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