

Attribution Principles for Data Integration:
Technology Perspectives

February 2002

Thomas Lee

Department of Operations and Information Management
University of Pennsylvania, The Wharton School

2

This page left intentionally blank.

Attribution Principles for Data Integration:
Technology Perspectives

by

Thomas Y. Lee

Abstract
This paper is excerpted from a thesis submitted to the Engineering Systems Division in partial
fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts
Institute of Technology in January of 2002. This paper addresses problems of attribution that
arise from the data integration that is exemplified by data re-use and re-distribution on the
Web. We present two different perspectives. We begin with a simple definition of
attribution, asking what data are we interested in and where does it come from? A formal
model and its properties are defined, implementation in an extended relational algebra is
described, and application to semistructured data on the Web is discussed.

Our formal model of attribution is developed in the established foundation of the Domain
Relational Calculus (DRC). Three distinct types of attribution are identified: comprehensive,
source, and relevant. For each type, we consider the attribution of equivalent DRC
expressions, attribution for composed queries, and granularity. An algebra is presented to
implement the model. The extended algebra is closed, reduces to the standard relational
algebra, and is a consistent extension of the standard algebra.

Thesis Supervisor: Stuart E. Madnick
Title: John Norris Maguire Professor of Information Technology
 MIT Sloan School of Management

4

1 Introduction

In the legend of Theseus, the hero of Athens entered the Labyrinth of Daedalus on the
Isle of Crete to face the Minotaur. Critical to both his successful hunt and victorious
return was the simple ball of thread that Theseus used to trace his path. (Bulfinch 2001;
Lindemans 2000) As the wealth of content available via electronic networks continues to
grow, the Internet has become a maze to rival Daedalus' Labyrinth.

Today, the World Wide Web is a popular way to access the Internet. One group of tools
to help people navigate the labyrinth of on-line content are integration services that allow
a user to pose rich queries across multiple sites and aggregation services which
effectively roll several different sources behind a single point of entry (like Web portals).
Consider for example, the case of planning a vacation. The Web may be like having the
library on your desktop, but in at least one way, the virtual is no better than the physical.
You still must go to the travel section (in the library or on some Web portal like
Yahoo!) and search the different travel guides.

Suppose that you are planning a trip to Japan. There are dozens of on-line resources,
many accessible over the Web, ranging from guides for budget conscious travelers
(Lonely Planet, Hostelling International) to more traditional guides (Frommer's Travel
Guides) to application specific resources (Hotelguide.com, roomz.com). Note that these
are resources for researching your trip. We are not discussing transactions such as
making reservations or purchasing event tickets.

Rather than laboriously surfing through multiple guides, suppose that you had access to a
Travel Resource Integrator (TRI). You might then want to ask:

Q1 What places in Tokyo, Japan may a person traveling alone find a single bed for less than
25,000¥?

The TRI might provide you with the following table:

 5

name price
Asakusa View 18000
Ginza Dai-Ichi 15000
Dai-Ichi 10000
Grand Palace Hotel 10000
Asakusa Prince 10000
Hotel Sofitel 17000
Tokyo Yoyogi 3000
Tokyo International 3100
Sky Court Koiwa 4500
Sky Court Asakusa 5000

Table 1.1 Results for Q1

While demonstrating the convenience of such a tool, this example also serves to illustrate
at least one specific problem with data integration tools like the TRI that applies not only
to users but to providers of on-line resources such as those accessible over the Web.
Specifically,

Where does this information come from?

You as a user might like to know where the information comes from for reasons such as
quality or search. Some questions related to quality that you might wonder include:

• Do you trust the source of this hotel list?
• Does this hotel list draw upon established, reputable resources such as Frommer's

or Baedeker's, or is the list compiled from the memories of people who traveled to
Tokyo twenty years ago?

• Is the information in the list current? Hotel prices often fluctuate significantly
depending upon the time of year you wish to travel. Are all of the listed
establishments still in business?

Even if you assumed the veracity of the content, once you had a list, you might want to
read more about a specific hotel. To read additional information, you would want to look
in the guide where you originally learned about the hotel in question. For example, you
would want to know that the listing for the Asakusa View came from the Frommer's.
Additional information that might be answered from the sources include:

• Are any on this list single beds (e.g. youth hostels) rather than single rooms?
• Which of these lodging options, if any, are located by interesting tourist

attractions?
• How can I make a reservation at one of these listings? Is there a phone number to

call?

Information providers also have an interest in knowing where information comes from
and how data flows. Who should receive acknowledgement for preparing the data in
your query result? Who should be paid for this data? If the information is older than the

6

copyright term limit, is the content transferred to the public domain (and therefore free).
However, how would individual users know which data fit that category? A single query,
moreover, may use information from more than one place. How are rights and
remuneration rationed between different contributors? The problem, for both users and
the market as a whole, made difficult by the migration from physical to electronic, is only
exacerbated by the Web, which makes it easy for people to link and frame or copy
content from other sources.

In summary, then, we have suggested three general reasons why attribution is important:
data quality, search, and intellectual property.

The question of attribution and its implications is not merely speculative. mySimon Inc.
is a comparison shopping service that aggregates data from a number of on-line catalogs
in a single data warehouse to facilitate user search. In 1999, mySimon brought suit
against Priceman, another comparison shopping service, charging, among other claims,
that "Priceman did not sufficiently attribute its meta-search results to mySimon (Kaplan
1999)."

eBay, Inc. hosts an on-line auction house that allows users to play the parts of both buyer
and seller. Sellers post items for auction in a database of products that buyers may
browse or search and bid for. Bidder's Edge (BE), a comparison service not unlike
mySimon or Priceman, warehoused the contents of several auction houses including
eBay, Amazon, and Yahoo. eBay won a preliminary injunction against BE's practice in a
lawsuit that included the complaint that "caching can lead to outdated information ...
potentially harming eBay's reputation (Krebs 2000)."

While these two cases highlight the relevance of attribution-related issues, they also
highlight a third point, the legal distinction between individual users and third party
services. Suppose that eBay and mySimon were on-line travel resources. An individual
user, like a physical shopper, could certainly have behaved like an integrator by visiting
different stores and comparing prices without inducing any lawsuits. What if you asked a
friend to shop for you, however? What if you paid a personal assistant to shop on your
behalf? What about a commercial service? Finally, to what degree can the integration
service "anticipate" your requests and search in advance? Ultimately, how far removed
from an individual user can an integration service stray while still claiming to "stand in
the shoes" of that user?

Details of these cases and others are discussed in a separate paper on policy perspectives
to the attribution problem space. However, even this brief introduction serves to
illustrate the tension generated by integration: Users benefit from integration, but
integration can reduce a database producer's incentives to the point that there are no
databases to integrate. As Senator DeWine explained, the threat is that "investment in
databases will diminish over time.... Ultimately, the reliability of information available
to consumers over the Internet would be undermined (MacMillan 2000)."

 7

The thesis from which this paper is excerpted is about technologies and policies for
balancing the tension between database integration and database production. Data
integration is a challenging problem with issues that range from the technical (e.g.
semantic and syntactic heterogeneity between sources (Goh 1997; Wiederhold 1992) to
policy (e.g. standards for data organization and presentation (e.g. EDI, ASN.1, XML).
This thesis identifies a set of challenges to integration that stem from the problem of
attribution (i.e. knowing where data comes from). The challenges embrace a range of
technology and policy questions. Therefore, the thesis is divided into two parts. In this
thesis excerpt, which constitutes Part 1, we adopt a technology-based approach to
documenting data sources. A formal model of attribution is introduced to support the
capability of integrating data from heterogeneous sources. In a separate thesis excerpt,
Part 2, we expand the scope of our examination from technologies that support data
integration to the general issue of data integration regardless of the means for doing so.
Policy measures to both limit and support integration based upon where information
comes from are considered.

In Part 1, we propose one technological approach to addressing attribution-related
challenges. We develop a formal model of attribution in the context of the relational data
model. Although motivation for this work largely stems from efforts to introduce
transparency to the heterogeneous, semistructured environment that is the World Wide
Web, we build our theory in the relational context because the relational data model
provides firm theoretical grounding and is the foundation for the most widely used
commercial database products today.

Because of society's ever deepening dependence upon streams of data, we have not been
the only individuals interested in the integration-attribution problem space. It becomes
clear that over time, no small amount of theoretical and empirical research, often in
different guises, has already been leveled at the general problem of attribution. Section 2
provides a very brief overview of a number of the diverse, perhaps seemingly unrelated
research streams. Research approaches and results more similar to our own or upon
which we draw heavily are revisited and discussed in greater detail throughout the thesis.

Section 3 provides a high-level tour of the model. Through examples and illustrations,
we attempt to provide an intuition for the different concepts and principles that the model
aims to characterize. In Section 4, we extend our intuitions to a formal model. Our goal
in providing a formal model is to offer a consistent framework for interpreting different
facets of attribution and understanding how those different dimensions relate to one
another. Our formalization is based upon the proof semantics of the domain relational
calculus (DRC). A brief review of the specific syntax and semantics assumed is
provided.

After presenting the model and some of its properties, we extend the relational algebra in
Section 5 to support one instance of the model. We consider some general properties of
algebraic extensions such as closure and expressiveness. Then we evaluate the degree to

8

which the extended algebra implements the model. Finally, revisiting the example from
Section 6 that originally motivated our exploration of attribution, we begin a discussion
of extensions to our model of attribution.

2 Related work
As evidenced by the history of research in citations and references, attribution existed as a
general principle of data management long before the advent of digital media and electronic
databases (IFLA 2002). The need for attribution is only exacerbated by the medium for
widespread data reuse and redistribution that defines the World Wide Web. Therefore, it is
perhaps not surprising that there is a great deal of research that relates in one measure or
another to the attribution problem space as articulated in Section 1.

Rather than attempting to survey the entire body of related work, we focus on research most
similar to our own. Where useful to do so, we attempt to direct the reader to specific
application domains or other lines of work that may prove fruitful either for future extensions
or to complement that which is presented in this thesis.

We defined the breadth of the problem space in Section 1 based upon the dimensions of who
is gathering and integrating data, what data is gathered, where the data comes from, when the
data is collected, why or on whose behalf the content is collected, and how the integrated
collection is used. While there are many technology-based approaches to specific dimensions
of the problem (e.g. cookies and Web logs are two approaches to identifying who), attribution
focuses on drawing the connection between what and where.

2.1 Formal approaches
Research on the relationship between what and where falls is separable into formal
approaches and pragmatic experience. Pragmatic experience is discussed below. Formal
approaches in the literature define attribution in one of two ways: the relational algebra and
the relational calculus.

The attribution model developed in this thesis was inspired by the Polygen data model, which
was first presented in (Wang and Madnick 1990). Though they do not offer a formal
definition, Wang and Madnick implicitly define attribution algebraically, as part of a system
to assess data quality in heterogeneous data integration. In a Polygen relation, every value has
two sets of metadata associated with it. For each result value, input relations are classified
into one of three categories: a source, an intermediate, or irrelevant. The source set and
intermediate set each constitute a heuristic for assessing the quality of a value and the quality
of the overall query result. The sources for a value in the result are inductively defined as the
algebraic input relations that contain those tuples from which said value derives.
Intermediates are those relations used to evaluate algebraic selection conditions for the query
result. Granularity is introduced implicitly. Specific values in the result (fine-grained result
granules) are linked to base relations (coarse-grained source granules).

Sadri's work on Information Source Vectors (ISVs) also provides an implicit, algebraic
definition of attribution by defining the quality of a tuple in the query result (Sadri 1991;
1994; 1995). Like the Polygen data model, ISVs also classify input relations into one of three
roles. ISVs, however distinguish between corroborating and contradictory sources. A source

10

vector, with one slot for every input relation in the database, is associated with every tuple of
every base and intermediate relation. The ISV for a result tuple is inductively derived from
the ISVs of the algebraic query inputs. Each source vector implicitly corresponds to our
notion of comprehensive attribution. Because sources are not distinguished from
intermediates, Sadri can associate a source vector with every tuple in a relation rather than
every value in a relation.

It is worth noting that there exists a host of other works, some of which we will mention in the
context of pragmatic approaches to attribution below, that also rely upon implicit, algebraic
definitions of attribution. Domain and application specific research in the area of Census data
tracking, Geographic Information Systems, and security authorization (Ferber 1991; 1992;
Lanter 1991; Lanter and Surbey 1994; Motro 1996; Motro and Rakov 1998; Rosenthal and
Sciore 1999a; b; Woodruff and Stonebraker 1997) all determine some meta-characteristic of a
value or a tuple in a result based upon the processing of input relations. Some (Woodruff and
Stonebraker 1997) define fine-grained lineage, associating result values with input values
rather than input relations. Note that we may frame some of the research in probabilistic or
temporal databases similarly (Dey, Barron, and Storey 1996; Dey and Sarkar 1996). The
probabilities or temporal ranges are a function of the constituent inputs. From the perspective
of defining attribution based upon the query processing operations, however, they are all
essentially similar.

The research in this thesis builds from earlier work that combines the concept of attribution
with a specific metric that derives from the input relations such as data quality or access
permissions. We extend the existing literature in several respects. First, we provide an
explicit definition of attribution. This definition is couched in terms of the relational calculus
and the logical foundations for relational database theory rather than implicitly in the algebra.
Second, we refine the concepts of source and intermediate to distinguish between three types
of attribution, comprehensive, source, and relevant, to correspond to different user needs.
Third, based upon the formal model we can express equivalence properties for attribution.
Finally, we attempt to articulate granularities explicitly and then suggest how the relationship
between source and result granules may support subsequent algebraic extensions to reduce the
burden of propagating attribution metadata.

In contrast to the implicit algebraic definitions of some of the early work in source tracking,
Cui et al. (2000; 2001; 1997 (revised 1999)) provides a formal definition of lineage, in terms
of the relational algebra. Reflecting their primary application domain, data warehousing, Cui
et al. further extend their definition of lineage first to encompass bag semantics and
aggregation functions and later to more general classes of transformations (e.g. arithmetic
functions in a select clause, grouping tuples, etc.). For the base relational operators, the
lineage of a result is recursively defined by the successive application of operators in the
query tree. Equivalence properties of lineage are defined. As with Sadri (1991),
corresponding to their focus on comprehensive attribution, Cui et al. (1997 (revised 1999))
define attribution for result tuples. Unlike earlier work, however, they focus on "fine-
grained" lineage and associate result tuples with input source tuples rather than input
relations.

 11

Given our characterization of the attribution problem space, we define three different types of
attribution rather than one. Each type of attribution has somewhat different properties with
respect to both equivalence and granularity. Lineage, as defined in (Cui, Widom, and Wiener
1997 (revised 1999)), corresponds to our concept of comprehensive attribution. We also
attempt to define the relationship between source and result granules explicitly.

The relational calculus and the relational algebra are equal in their expressiveness.
Consequently, neither model is necessarily better than the other for defining attribution.
However, as is echoed in the work by Buneman et al. (1998; 2001), the different semantics of
calculus queries provides a more direct parallel to languages for querying semistructured data
on the Web; and it is the reuse and redistribution exacerbated by the Web that underlies our
interest in attribution.

The second category of theoretical approaches builds or borrows from the first-order predicate
logic with which the relational calculus is defined. In the relational calculus, queries take the
form of expressions on predicates that represent relations. Intuitively, values in a query result
are attributable to values from the relational predicates that make the query expression true.

Panorama (Motro 1996) is a system for assessing the quality of data in a query result.
Panorama explicitly notes that the same quality assessment(s) might not apply uniformly to all
values in the relation (granularity). The reliability or completeness of answers are at least
partially determined by their contributing sources. Quality properties are thus associated with
the subset of tuples in a relation for which the property holds. A tuple subset is proscribed by
a meta-tuple or select-project view expressed in the relational calculus. A particular property
is inherited by a query result if tuples from the corresponding meta-tuple provide a true
interpretation of the query expression.

Using query expressions to define meta-tuples matches our use of expressions to define
source granules. We extend the intuition one step further to associate source granules with
result values rather than tuples. This finer granularity supports three different types of
attribution. By contrast, Panorama propagates values based upon our notion of source
attribution or the specific meta-tuple(s) or relations from which result tuples are drawn.
Finally, we do not associate source granules with particular properties of the sources, thereby
separating the attribution from a specific motivation (e.g. quality, intellectual property,
search), leaving the user or application domain to associate their own meta-characteristics.

Buneman et al. (1998; 2001) borrow from the logical intuitions underlying the relational
calculus, but generalize the data model to a deterministic semistructured data model. They
define both why and where data provenance for queries (path expressions) in this context. In
a separate work, Buneman et al. (2001; 2001) represents the concept of source granules as
deep linking into source documents. They also explore the use of key values (in the relational
sense) to represent linking into source documents.

12

The research by Buneman et al. is in many ways most similar to the spirit, approach, and
ultimate direction that we aim to pursue in this thesis. Indeed although we structure our
formal model in the relational framework to leverage existing results, our initial motivation
and long-term aim all along has been to extend the model to semistructured data on the Web.
Many of our early intuitions about attribution, such as attribution composition or source and
result granularity, stem from this semistructured orientation (Lee, Bressan, and Madnick
1997; 1998).

The semistructured data model is more general than the relational model from which we build
in this thesis. However, using the terminology loosely, the why provenance for a query on
semistructured data is the set of sub-trees that matches the path expression in the same way
that we define comprehensive attribution as the set of substitutions that provides a true
interpretation of a calculus query expression. Indeed (Buneman, Khanna, and Tan 2001)
draws upon the same conjunctive query literature that we leverage in exploring equivalence
properties (Klug 1988; Sagiv and Yannakakis 1980; Ullman 1989). Similarly, where
provenance corresponds to our notion of source attribution, which in turn stems from the
source set for every value in a Polygen relation.

Framing our work in the relational calculus, as noted earlier, allows us to borrow directly
from the existing literature on equivalence and containment. We are, however, limited to
intuitions and observations about the parallels to querying in semistructured environments.
We introduce three types of attribution, which better support not only the motivations of the
attribution problem space but relate to the relationship between source and result granules.
We also treat explicit equality in theta comparisons independently of the natural join. This
reflects a distinction in source attribution (where provenance) relevant to such purposes as
intellectual property or remuneration. The natural join suggests that both relations are sources
for the join attribute whereas explicit equality indicates that each argument to the equality has
only one, distinct source. Finally, we also present an extension to the relational algebra as a
mechanism for explicitly propagating attribution metadata in annotations.

2.2 Pragmatic approaches
Turning from different formal methods for defining attribution, we next consider pragmatic
approaches to providing attribution support in querying and integration.
We can separate pragmatic strategies for managing attribution into eager and lazy approaches.
Eager approaches continuously update and propagate attribution metadata as a part of query
processing. A'priori evaluation, however, amortizes the cost of attribution maintenance over
multiple values in the data set and minimizes response time to requests for attribution. We
may also think of eager approaches as bottom-up approaches that recursively maintain
attribution values.

By contrast, lazy approaches, which may also be thought of as top-down approaches, begin
with a query result and drill backwards to trace sources for specific values only in response to
specific requests. Minimal expense is incurred in query processing, but the cost of responding
to any single attribution request is much higher. Hybrid models may evaluate the attribution

 13

for certain intermediate inputs (e.g. frequently used views) to speed-up response to ex-post,
lazy attribution requests.

Early work on extensions to the relational data model were, in part, both motivated by and
demonstrated using eager attribution principles. Schek and Pistor (1982) articulated their
approach to the non-first normal form in the context of merging information retrieval and
database approaches to managing search. In their NF2 model, data values are extended with a
relation identifying their source(s) as a means for directing subsequent information retrieval
queries for additional data. Their early work echoes an attribution driver identified in Section
1, searching for related information.

The Polygen data model (Wang and Madnick 1990), upon which this thesis is based, is
another prototypical example of an eager approach to attribution. Wang and Madnick extend
the relational data model with two annotations - one each for references to sources and
references to intermediates. Every domain value is therefore a triple and a relation is a finite
subset of the Cartesian product of such triples. Polygen extensions to the algebra then update
values in the source and intermediate annotations with each successive application of the
corresponding operator. References are relation names. The Polygen model therefore
provides attribution for individual result values using relation-level source granules.

A number of projects that calculate and propagate meta-attributes of data (e.g. time stamps,
probability, quality, authorization) work in a similar manner. In (Dey, Barron, and Storey
1996; Dey and Sarkar 1996), a tuple is tagged with a probability measure or time stamp,
respectively. The preservation of certain algebraic equivalencies is demonstrated and, in the
case of the temporal relational algebra, aggregation functions are also considered. Both
closure and consistency with the traditional relational algebra are verified. Tuples are tagged
similarly with quality specifications in (Motro and Rakov 1998). Algebraic extensions
manage metadata propagation from constituent inputs to results. In (Rosenthal and Sciore
1999b), security policies are specified as the manner by which security authorizations are
aggregated. For example, the permissions on a specific tuple might be the least upper bound
of the permissions on all inputs.

That different projects may calculate meta-characteristics at different levels of granularity is
perhaps more a function of the application domain than a limitation of the eager approach.
Certain applications (e.g. intelletctual property), may wish to identify the Source of a specific
value in a tuple while other uses of attribution may require only tuple-level granularity. The
principle distinction between these domain specific approaches and the work in this thesis (as
well as the Polygen data model from which this work derives) is the propagation of source
meta-characteristics (e.g. quality) rather than source references.

Sadri's (1991; 1994; 1995) work on Information Source Vectors (ISVs) suggests the
complementary nature of the two approaches to annotation. The relational data model is
extended with an ISV annotation for every tuple. Algebraic extensions update and propagate
ISVs for result tuples. The quality of a given tuple is then determined as a function of the

14

corroborating and contradictory sources in the corresponding ISV rather than returning a
continuously updated metacharacteristic. Where ISVs are associated with result tuples, the
attribution in this work is associated with individual values, thereby supporting distinctions
between types of attribution.

In addition to eager approaches that extend the data representation with annotations are eager
systems that construct parallel data structures for managing attribution metadata. Panorama is
one such system (Motro 1996). In Panorama, annotations on the quality (e.g. soundness,
completeness) of tuples in a relation are associated with a meta-tuple for the relation. A meta-
tuple is simply a select-project view defining the subset of tuples to which the metric applies.
The set of all metrics applicable to a relation is called a meta-relation. Queries on relations
are paralleled by operations on the corresponding meta-relation.

Where eager approaches propagate data continuously, lazy approaches minimize the ex-ante
cost of maintaining attribution. A minimum amount of information is stored. Only when a
specific request is initiated, is the attribution for a result calculated.

In his work to support data integration and reuse in Geographic Information Systems (GISs),
Lanter maintains GIS metacharacteristics in a parallel data structure (Lanter 1991; Lanter and
Surbey 1994). Where algebraic operators in the relational model process relational tuples,
GISs process layers. Lanter defines a frame-based representation to capture layer-level
metacharacteristics including data transformations. Operations on layers are paralleled by the
updates to the corresponding knowledge-base tracking GIS processing. Specific
metacharacteristics are therefore associated with each layer in the manner of tuple-level result
granules. The lineage for a result is generated by tracing backwards through the frames
associated with each successive processing step.

Like Lanter's system for Geographic Information Systems, Woodruff and Stonebraker (1997)
define a system to trace data lineage. Unlike Lanter's layer-granularity that documents
metacharacteristics at the level of a data set, Woodruff and Stonebraker register data
transformations and their inverses. The inverses allow users to regenerate specific base level
data inputs to the transformation process. Original data values are calculated iteratively by
unfolding successive operations. The result is fine-grained lineage that traces from a value in
the result to the source input values rather than merely linking result sets to their constituent
inputs.

Cui et al. (2001) investigates lineage for general data transformations in the spirit of
(Woodruff and Stonebraker 1997). However, it is their earlier work tracing relational queries,
described in (Cui and Widom 2000; Cui, Widom, and Wiener 1997 (revised 1999)), that our
extended algebra is most similar to. Assuming a canonical form of an algebraic query tree,
Cui and Widom algorithmically construct a tracing query that, for a given result tuple, returns
the input tuples. The algorithm works by essentially projecting the result tuple as query
constraints down the algebraic query. The resulting lineage is transitive over intermediate
results and through querying on views.

 15

Although the technique does not strictly require maintaining meta information, as used in
eager approaches, it is possible to achieve greater efficiency in lazy attribution processing by
utilizing eager approaches in a limited manner. Cui et al. (1997 (revised 1999)) discover
significant improvement in lazy performance by storing auxiliary views, which we might
equate with eager evaluation of attribution metadata for intermediate query results.
Maintaining a minimal amount of metadata with query processing also enables Cui et al. to
trace backwards through aggregation functions.

We adopt an annotation approach to managing attribution metadata. Based upon our formal
definition of attribution and our articulation of granularity, we redefine the extended relational
operators to support the formal definition of attribution. Unlike some of the approaches that
extend the relational model, we show how general properties of the algebra, such as closure,
are preserved. Moreover, unlike approaches that rely upon implicit definitions, we show how
the algebraic extensions indeed support our logical intuitions about the different
interpretations of attribution. Although the algebra tracks source granules at the granularity of
relation names, it is a straightforward extension to consider variable granularity using
expressions as in Panorama (Motro 1996) rather than relations (Sadri 1991) or explicit source
tuples (Cui, Widom, and Wiener 1997 (revised 1999)).

Annotations in a bottom-up manner seems the most general approach for addressing the
myriad interests that we initially identified in attribution. Certainly systems designed with
specific goals in mind might prefer one particular approach over another. Moreover, the top-
down query tracing implemented by Cui et al. is similar in spirit to how Panorama associates
result granules with source granules and how we project substitutions onto intermediate
relational predicates in attribution composition.

Where meta-tuples in Panorama or the metadata in other systems to document data
probabilities, quality, or authorization (Dey, Barron, and Storey 1996; Dey and Sarkar 1996;
Motro 1996; Motro and Rakov 1998; Rosenthal and Sciore 1999a) are explicitly associated
with specific metrics, we define attribution only as the association between source and result
granules. Doing so allows us to define different types of attribution and to parametrize
attribution with different functions for quality, intellectual property, or search metrics as the
need arises.

16

 SECTION 2

3 Attribution intuitions

In Section 1, we provided some rough boundaries about the attribution problem space and
some desiderata for a formal approach to that space. Here, we begin Part 1 of the thesis.
Beginning with Section 3 and extending through Section 6, we develop a model for
attribution. Although we make the model formal in Section 4, we begin in this Section
by attempting to provide the intuitions behind the features and properties of our proposed
model. The intuitions are intended to connect the reader from the problem space defined
in Section 1 to the formalisms in Section 4. After presenting the model, we
operationalize one instance of the model as an extension to the relational algebra.
Finally, we consider how the model might apply in the emerging semi-structured data
environment.

Throughout this Section and the remainder of this thesis, we couch many of our examples
in the context of the relations listed in Table 3.1. The six relations in Table 3.1 represent
a number of separate (Web accessible) data sources concerning lodging and tourist
attractions in Tokyo, Japan. The relation hotels(HNAME, ROOM, PRICE) lists hotels in
Tokyo along with a minimum price for rooms in the ROOM category. The relation
sites(SNAME, REGION) identifies tourist attractions in Tokyo along with the general
vicinity where the attraction is located. The three relations roughguides(HNAME, PRICE,
STATION, PHONE); jyh(HNAME, PRICE, STATION, PHONE, FAX); and hostels(HNAME,
PRICE, STATION) all provide listings of youth hostels or other low-budget lodging in
Tokyo. The attribute STATION identifies the closest rail station to the associated lodging.
regions(HNAME, REGION) provides the general geographic location of selected Tokyo
hotels. Though the model is developed in the DRC, for readability, the examples in this
Section are posed in English, SQL, and the calculus.

3.1 The meaning of attribution
This theory of attribution is based upon the domain relational calculus (DRC), a logical
formalism for representing and evaluating relations between data domains. We build our
model in this environment because, while our motivation is heavily influenced by the
rapid evolution of data integration on the World Wide Web, most of what is known today
about managing and manipulating data is rooted in relational terms. The calculus is also
the foundation for SQL, one of the most widely recognized and used standards for
querying and managing information. In theoretical terms, then, the calculus will allow us
to be precise about our observations and intuitions. Pragmatically, much of the data
being used today, even that accessible over the Web, is still managed and manipulated
using relational tools built on the calculus.

 17

 roughguides

hotels HNAME PRICE STATION PHONE

HNAME ROOM PRICE Sky Court Asakusa 5000 Asakusa 81-3-3672-4411

Asakusa View single 18000 Hotel Pine Hill 10000 Ueno-Hirokoji 81-3-3822-2251

Asakusa View double 20000 Sawanoya Ryoken 5000 Nezu 81-3-3847-4477

Ginza Dai-Ichi single 15000 Hotel Top Asakusa 7000 Asakusa 81-3-3822-1611

Ginza Dai-Ichi double 25000 Ryokan Shigetsu 7000 Asakusa 81-3-3843-2345

Imperial Hotel single 34000

Imperial Hotel double 39000 jyh

Dai-Ichi single 10000 HNAME PRICE STATION PHONE FAX

Dai-Ichi double 80000 Tokyo Yoyogi 3000 Sangubashi 81-3-3467-0163 81-3-3467-9417

Grand Palace Hotel single 10000 Tokyo International 3100 Iidabashi 81-3-3235-1107 81-3-3267-4000

Grand Palace Hotel double 31000 Sky Court Koiwa 4500 Koiwa 81-3-3672-4411 81-3-3672-4400

Asakusa Prince single 10000 Sky Court Asakusa 5000 Asakusa 81-3-3672-4411 81-3-3875-4941

Asakusa Prince double 42000

Hotel Sofitel single 17000 hostels

Hotel Sofitel double 22000 HNAME PRICE STATION

 Tokyo Yoyogi 3000 Sangubashi

sites Tokyo International 3100 Iidabashi

SNAME REGION Sky Court Koiwa 4500 Koiwa

Imperial Palace Hibiya Sky Court Asakusa 5000 Asakusa

Tourist Information Center Hibiya Hotel Pine Hill 10000 Ueno-Hirokoji

Tsukiji Fish Market Hibiya Sawanoya Ryoken 5000 Nezu

Hama Rikyu Garden Tsukiji Hotel Top Asakusa 7000 Asakusa

Sensoji Temple Tsukiji Ryokan Shigetsu 7000 Asakusa

Nakamise Dori Asakusa

Ameya Yokocho Asakusa regions

Ueno Park Ueno HNAME REGION

Tokyo National Museum Ueno Hotel Sofitel Ueno

Yanaka Ueno Katsutaro Ueno

Meji Jingu Shrine Ueno Dai-Ichi Hotel Hibiya

 Imperial Hotel Hibiya

 Asakusa View Asakusa

Table 3.1 Data for examples

The interpretation of a calculus expression is the set of variable substitutions that
correspond to facts in the database and make the formula of the expression true (Maier
1983). In the most general sense, we express attribution in terms of the substitutions that
make the interpretation of the expression true.

Example 3.1 Intuition for attribution
Q1. Based upon the database of Table 3.1, we might ask: What are the names of
all known lodging establishments in Tokyo, Japan? We could answer this
question by considering the union of a query on the relation hotels and a query on
the relation hostels.

18

SQL 1.1 select HNAME from hotels
 union
 select HNAME from hostels

DRC 1.1 {HNAME | hotels(HNAME, ROOMS, PRICE) ∨ hostels(HNAME, PRICE,

STATION)}

The query result is:
HNAME
Tokyo Yoyogi
Tokyo International
Sky Court Koiwa
Sky Court Asakusa
Hotel Pine Hill
Sawanoya Ryoken
Hotel Top Asakusa
Ryokan Shigetsu
Asakusa View
Ginza Dai-Ichi
Imperial Hotel
Dai-Ichi
Grand Palace Hotel
Asakusa Prince
Hotel Sofitel

Table 3.2 Lodging establishments in Tokyo, Japan

Some of the substi the following:
<f("Asakusa View"/HNAME, "single"/ROOMS, 18000/PRICE)>;

ION)>;

If w alk about different roles that

urces play based upon the substitutions (facts) from each source used to interpret the

tutions that provide true interpretations include

<g("Tokyo Yoyogi"/HNAME, 3000/PRICE, "Sangubashi"/STATION)>;
<g("Sky Court Asakusa"/HNAME, 5000/PRICE, "Asakusa"/STAT
<f("Dai-Ichi"/HNAME, "double"/ROOMS, 10000/PRICE)> 

e further represent relations as sources for data, we can t
so
expression. Future references to 'sources' in this Section will refer to the relations
containing the facts which, when substituted into the query expression, produce a true
interpretation.

 19

Example 3.2 Intuition for a "source"

Given the substitutions for Q1 in Example 3.1, the corresponding sources are:
relation hotels and relation hostels. We depict this intuition in Figure 3.1. From
the answer, a list of HNAME, we can trace backwards to the corresponding input
relations. 

hostels
HNAME PRICE STATION

Tokyo Yoyogi 3000 Sangubashi

Tokyo International 3100 Iidabashi

Sky Court Koiwa 4500 Koiwa

Sky Court Asakusa 5000 Asakusa

single

double

singleGinza Dai-Ichi

doubleAsakusa View

singleAsakusa View

PRICE
18000
20000
15000
25000
34000

ROOMHNAME

Tokyo Yoyogi

Tokyo International
Sky Court Koiwa

Ginza Dai-Ichi

Asakusa View

HNAME

hotels

Figure 3.1 Intuition for a "source"

We saw in Section 1 that there may be different motivations for or interests in attribution.
Accordingly, our theory defines three explicit types of attribution: comprehensive,
source only, and relevant. Comprehensive attribution identifies everything that was used
to evaluate an expression. It identifies every source that was consulted. Certainly from
the perspective of remuneration, comprehensive attribution is in the interests of data
providers. From a data quality perspective, comprehensive attribution provides a
measure of completeness regarding the answer to a query.

Source attribution, by contrast, recognizes the difference between "supporting material"
and the actual facts. Source attribution identifies the specific relations from which a
query result is drawn. We use the metaphor of a footnote in a text citation. Unlike the
comprehensive listing of references in a bibliography, a footnote identifies author, title,
and page number for a specific fact, figure, or quotation. Certainly for intellectual
property purposes, source attribution is critical. Moreover, as measure of quality distinct
from that of comprehensive attribution, we may use the credibility of a given source to
label the veracity of the data from that source. Finally, knowing the specific source of a
data item provides us with a starting point for seeking additional, related information.

Relevant attribution constitutes a subset of comprehensive attribution. Given a specific
result, the relevant attribution identifies the subset of comprehensive references that are
associated with the source attribution of a particular query. For example, the
comprehensive list of references in this thesis numbers over 250 separate works.
However, our treatment of negation in Section 4 draws from work by Sagiv and

20

Yannakakis (Sagiv and Yannakakis 1980). However, we found this reference through a
series of other works (Abiteboul, Hull, and Vianu 1995; Ullman 1989). Relevant
attribution therefore traces the supporting material used to arrive at a single query. In
SQL terms, we may think of relevant sources as those used in evaluating selection
conditions.

In simple queries, the comprehensive, source, and relevant attribution may look identical.
As query complexity increases, however, particularly in the light of the data environment
of the Web, such distinctions may become increasingly important in parsing the
attribution problem space.

Example 3.3 Types of attribution
Q2. Consider the query where we ask for all hotels by the Imperial Palace in
Tokyo, Japan. Based upon the hypothetical database of Table 3.1, we have:
SQL 2.1 select HNAME
 from hotels, regions, sites
 where sites.SNAME = "Imperial Palace"
 and sites.REGION = regions.REGION
 and hotels.HNAME = regions.HNAME

DRC2.1 {HNAME | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧

hotels(HNAME, ROOMS, PRICE)}

The substitutions include (but are not limited to):
<f("Imperial"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "single"/ROOMS,

34000/PRICE)>;
<f("Imperial"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "double"/ROOMS,

39000/PRICE) >;
<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "single"/ROOMS,

10000/PRICE) >;
<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "double"/ROOMS,

80000/PRICE) >;

Now, consider the relations from where these substitutions are drawn. The
different substitutions are drawn from three different relations. Therefore, the
comprehensive attribution includes these three relations. But, not all of the
relations in the FROM clause of the SQL query are used to provide answers. As
illustrated in Figure 3.2, some sources are used to evaluate selection conditions
rather than provide selection attributes. In particular, the HNAME attribute that
constitutes the query result appears in only two of the queried relations. Thus, the
source attribution includes only two relation names. Finally, because the relation
sites is used in evaluating selection conditions, we include it in the relevant
attribution.1

1 For an example where comprehensive, source and relevant attribution are all different for the same query
expression, see Example 3.7 where we consider the Union query operator.

 21

comprehensive attribution
{<regions; sites; hotels>}

source attribution
{<regions; hotels>}

relevant attribution
{<regions; sites; hotels>} 

HNAME

Dai-Ichi

Imperial

REGION

Hibiya
Hibiya
Hibiya
Tsukiji

sites

SNAME

Imperial Palace

Tourist Information Center
Tsukiji Fish Market

Hama Rikyu Garden

hotels
HNAME ROOM PRICE

…
Ginza Dai-Ichi double 25000

Imperial Hotel single 34000

regions
HNAME REGION

Hotel Sofitel Ueno

Katsutaro Ueno

Dai-Ichi Hotel Hibiya

Imperial Hotel Hibiya

Asakusa View Asakusa

Figure 3.2 Example of source attribution

3.2 Properties of attribution
A specific challenge to any theory of attribution is treatment of multiple derivations.
Data may derive from many different sources and/or diverse combinations of sources.
Accordingly, this theory identifies several distinct categories of multiple derivations and
provides an explicit treatment for each. We loosely separate multiple derivations into
two categories. Case 1 concerns multiple queries that (appear to) achieve the same result.
Think of this as asking the same question in two different ways. For example, "What is
for dinner" rather than "What are we eating tonight?" Case 2 addresses a single query
that may produce the same answer from more than one source. For example, to discover
all the hostels in Tokyo, Japan, you might combine the results from looking in both a
Japanese travel guide and an international youth hostel guide. Some entries might be
listed in both places.

Case 1, multiple queries that (appear) to achieve the same result, is further separated into
three classes: weak equivalence, strict equivalence, and composition. Weak equivalence,
in a colloquial sense, refers to queries that, perhaps in some circumstances, appear as if
they should be equivalent yet are not logically equivalent and therefore vulnerable to
incomplete data or other contextual limitations (Ullman 1989).

22

Example 3.4 Weak equivalence
Q3. Consider the query that asks for all hotels in Tokyo, Japan. Given only the
schemas for the relations in Table 3.1, we might conclude that there are at least
three different ways to list hotels in Tokyo.

SQL 3.1 select HNAME from regions
SQL 3.2 select HNAME from hotels
SQL 3.3 select HNAME from regions, hotels where hotels.HNAME =

regions.HNAME

Unfortunately, as is often the case in real tables, our example data relations are
incomplete. There are a number of dangling tuples (Ullman 1989). The incompleteness
is especially apparent when we consider the results from each of SQL 3.1 – 3 as noted in
Table 3.3. 

HNAME HNAME HNAME
Hotel Sofitel Asakusa View Hotel Sofitel
Katsutaro Ginza Dai-Ichi Imperial Hotel
Dai-Ichi Hotel Imperial Hotel Asakusa View
Imperial Hotel Dai-Ichi
Asakusa View Grand Palace Hotel
 Asakusa Prince
 Hotel Sofitel

SQL 3.1 SQL 3.2 SQL 3.3

Table 3.3 Weak equivalence

In principle, it seems only reasonable that the data in a database should be somehow
complete and internally consistent. Yet, different tables appear to list different hotels
even though they all purport to list hotels in Tokyo, Japan. Though a subject studied in
the query optimization literature, we do not consider weak equivalents to constitute
multiple derivations and so treat them as distinct queries and say nothing more about
them.

Strict equivalence refers to the characteristic that two queries produce the same result
given the same database.2 We introduce the modifier "strict" to emphasize the fact that
the multiple queries use the same data sources.

Example 3.5 Strict equivalence
Consider again Q2 which we can express in the DRC as

2 We refer to the more formal definition of equivalence based upon containment in Section 4 (Ullman
1989).

 23

DRC 2.1 {HNAME | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧
hotels(HNAME, ROOMS, PRICE)}

DRC 2.2 {HNAME | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧
hotels(HNAME, ROOMS, PRICE) ∧ regions(AHOTEL,AREGION)}

A substitution for DRC2.1 might look like:
<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "single"/ROOMS,

10000/PRICE)>

A substitution for DRC2.2 might look like:
<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "single"/ROOMS,

10000/PRICE, "Asakusa View"/AHOTEL, "Asakusa"/AREGION)>

Note the similarities between the different substitutions. There are more variables
in DRC2.2, yet there is a consistency between the substitutions in DRC2.1 and
DRC 2.2. Moreover, our intuitions about attribution are the same for both
queries.

comprehensive attribution:
{<regions; sites; hotels>}

source attribution
{<regions; hotels>}

relevant attribution
{<regions; sites; hotels>}

In particular, for the case of strict equivalence, none of the data sources is defined in
terms of other available sources. 

Example 3.6 Defining a source in terms of other sources
Q4. Consider the query for all hostels in Tokyo, Japan
SQL 4.1 select * from hostels

The reliance of multiple intermediaries upon the same underlying base sources is
not always immediately apparent, however. For example, we define relation
hostels in terms of information from Japan Youth Hostels Association (relation
jyh) and Rough Guide Travel (relation rg). The relationship is depicted in Figure
3.3. Data is taken from the constituent relations to construct a new relation.

SQL 4.2 select HNAME, PRICE, STATION from jyh
 union
 select HNAME, PRICE, STATION from rg 

24

In focusing only on strict equivalence, we borrow from the query optimization literature
to arrive at the result that the attributions for equivalent select, project, join queries
involving theta inequality and natural join are, in some sense, the same. Attribution
equivalence is evident in Example 3.5 where, although DRC2.2 has more variables and
predicates, there is the sense that there is no extra information gained. We make this
intuition explicit when we define attribution equivalence more formally in Section 4.
However, attribution equivalence is lost for complete and source attribution when we
consider queries with union.

roughguides
HNAME PRICE STATION PHONE

Sky Court Asakusa 5000 Asakusa 81-3-3672-4411

Hotel Pine Hill 10000 Ueno-Hirokoji 81-3-3822-2251

hostels
HNAME

jyh
HNAME PRICE STATION PHONE FAX

Tokyo Yoyogi 3000 Sangubashi 81-3-3467-0163 81-3-3467-9417

Tokyo International 3100 Iidabashi 81-3-3235-1107 81-3-3267-4000

PRICE STATION

Tokyo Yoyogi 3000 Sangubashi

Tokyo International 3100 Iidabashi

Sky Court Koiwa 4500 Koiwa

Sky Court Asakusa 5000 Asakusa

Figure 3.3 Views: defining sources from other sources

Example 3.7 Attribution equivalence breaks down under union
Consider again Q3, which we defined as all hotels in Tokyo, Japan.

We originally answered this question with
SQL 1.1 select HNAME from hotels
 union
 select HNAME from hostels

Perversely, we might equally answer the query this way:
SQL 1.2 select HNAME from hotels
 union
 select HNAME from hostels
 union
 select HNAME
 from hotels, regions, sites
 where sites.SNAME = "Imperial Palace"
 and sites.REGION = regions.REGION
 and hotels.HNAME = regions.HNAME

 25

SQL 1.2 corresponds to:
DRC1.2 {HNAME | hotels(HNAME, ROOMS, PRICE) ∨ hostels(HNAME, PRICE,

STATION, PHONE) ∨ (regions(HNAME, REGION) ∧ sites("Imperial Palace",
REGION) ∧ hotels(HNAME, ROOMS, PRICE))}

Compare the attribution between DRC1.1 and DRC1.2 as listed in Table 3.4. In
particular, the source attribution takes into account the sources used in evaluating
each disjunct. However, the third disjunct is arguably irrelevant because any
answer in the third disjunct appears also in one of the first two disjuncts.

Returning briefly to Example 3.3, we see that SQL 1.2 and its associated DRC
help highlight the intuition behind the different types of attribution. First,
consider comprehensive attribution. Each disjunct represents a distinct alternative
for satisfying the DRC1.2. However, taken together, every relational predicate in
the query expression plays some role in evaluating the result. The reader will
note that the query only asks about hotel names (HNAME), however. Hotel
names are only found in four of the five relations used in the expression. If, for
example we wanted to verify the spelling of a particular hotel name, there would
be no reason to return to relation (sites). That relation does not list any hotel
names. Source and comprehensive attribution are therefore distinct. Finally, as
observed earlier, the third disjunct in DRC1.2 is contained (or subsumed) by the
first two disjuncts. As a consequence, the third disjunct cannot impact the query
results and so we omit relations from the third disjunct. The third disjunct is not
relevant.3


 DRC1.1 DRC1.2

comprehensive {<hotels>; <hostels>} {<hotels>; <hostels>; <hotels; regions; sites>}
source {<hotels>; <hostels>} {<hotels>; <hostels>; <hotels; regions>}

relevant {<hotels>; <hostels>} {<hotels>; <hostels>}

Table 3.4 Attribution equivalence with union

The "strict" condition contrasts the third class of queries: "composition," where sources
are defined in terms of one another. We saw in Example 3.6 what it means for a source
to be defined in terms of other sources, often referred to as views.4 Composition
addresses the situation where a query can either be composed on a view or expressed
strictly in terms of the original sources underlying any view definition.

3 It is worth emphasizing that while relations may prove irrelevant, they are not without value. As in
comprehensive attribution, we may use equivalent derivation paths to increase our confidence in a
particular result. Although outside the scope of this work, we may also consider the role of disjuncts which
are, in principle, contained but may contain contradictory information (Sadri 1991).
4 In the relational context, relations defined in terms of other relations are often referred to as views. In the
literature on databases and logic, such relations are referred to as intentional databases or IDB (Ullman
1989).

26

Example 3.8 Query composition
Q5. Consider a query for all lodging (hostels and hotels) around the Nakamise
Dori. Based upon Example 3.6, we know that we can express the query in terms
of the relations for hostels and hotels:
SQL 5.1 select HNAME
 from hotels, regions, sites
 where hotels.HNAME = regions.HNAME
 and regions.REGION = sites.REGION
 and sites.SNAME = "Nakamise Dori"
 union
 select HNAME
 from hostels, sites
 where hostels.STATION = sites.REGION
 and sites.SNAME = "Nakamise Dori"

But, if we know in advance, as we know now, that relation hostels itself gathers
information from elsewhere, we can also express the query in terms of the underlying
data sources jyh and roughguides (rg) as:

SQL 5.2 select HNAME
 from hotels, regions, sites
 where hotels.HNAME = regions.HNAME
 and regions.REGION = sites.REGION
 and sites.SNAME = "Nakamise Dori"
 union
 select HNAME
 from jyh, sites
 where jyh.STATION = sites.REGION
 and sites.SNAME = "Nakamise Dori"
 union
 select HNAME
 from rg, sites
 where rg.STATION = sites.REGION
 and sites.SNAME = "Nakamise Dori"

We depict the intuition behind composition in Figure 3.4. SQL 5.1 uses only two
relations in the second disjunct (hostels and sites). It is as if relations jyh and
roughguides are hidden and inaccessible. Relation hostels then constitutes a view
on the underlying sources. The attributions for both queries is shown in Table
3.5. 

 27

 SQL 5.1 SQL 5.2

comprehensive {<hotels; regions; sites>;
<hostels; sites>}

{<hotels; regions; sites>; <jyh;
sites>; <rg; sites>}

source {<hotels; regions>; <hostels>} {<hotels; regions>; <jyh>; <rg>}

relevant {<hotels; regions; sites>;
<hostels; sites>}

{<hotels; regions; sites>; <jyh;
sites>; <rg; sites>}

Table 3.5 Attribution with composed queries

By definition, the query results of equivalent, composed queries are the same. The
attributions, however, can be quite different. This seems entirely correct. In the context
of distributed, heterogeneous information sources, such as the Web today where data is
frequently reused and redistributed, it is not unreasonable to cite an integrator as a source.
Factors that are beyond the scope of this thesis, such as reputation or trust may suffice as
a proxy for or even improve the perceived quality of the data.5

That some needs may be met by attributing to an intermediary source, however, does not
preempt the need to know more. We might still wish to look beyond the integrator,
unfolding layers of reuse and redistribution back to the underlying initial data sources.
We therefore propose an algorithm for unfolding an attribution by recursively attributing
values in the intermediary. Based upon this algorithm, we conclude that we can compose
an attribution in the same way that we compose relational queries.

Example 3.9 Attribution composition
Refer again to Q5 from example 3.8. We can translate the SQL queries into:
DRC5.1 {HNAME | (hotels(HNAME, ROOMS, PRICE) ∧ regions(HNAME, REGION) ∧

sites("Nakamise Dorsi", REGION)) ∨ (hostels(HNAME, PRICE, STATION) ∧
sites("Nakamise Dorsi", STATION))}

DRC5.2 {HNAME | (hotels(HNAME, ROOMS, PRICE) ∧ regions(HNAME, REGION) ∧

sites("Nakamise Dorsi", REGION)) ∨ (jyh(HNAME, PRICE, STATION, PHONE,
FAX) ∧ sites("Nakamise Dorsi",STATION)) ∨ (rg(HNAME, PRICE, STATION,
PHONE) ∧ sites("Nakamise Dorsi",STATION))}

Recall also that predicate hostels(XYZ) in DRC5.1 corresponds to
hostels(HNAME, PRICE, STATION, PHONE)  jyh(HNAME, PRICE,
STATION, PHONE, FAX) ∨ rg(HNAME, PRICE, STATION, PHONE)

5 We hypothesize that the data source provides a heuristic for the quality (e.g. timeliness or veracity) of data
available from the source. Data that comes from an unknown database producer may benefit (or suffer)
from integration and redistribution by compounding the positive (or negative) reputation of the integrator.
If an unknown data source is cited in the Wall Street Journal, the perceived quality of the data might rise
whereas if the data is cited in a daily tabloid known for exaggeration or hyperbole, the perceived quality of
the data might fall.

28

roughguides
HNAME PRICE STATION

Sky Court Asakusa 5000 Asakusa

Hotel Pine Hill 10000 Ueno-Hirokoji

sites

Nakamise Dori

Tsukiji
Asakusa

Sensoji Temple
…
Imperial Palace

REGION
Hibiya

SNAME

double

singleGinza Dai-Ichi

doubleAsakusa View

singleAsakusa View

PRICE
18000
20000
15000
25000

ROOMHNAME

hotels

Ryokan Shigetsu

Hotel Top Asakusa

Sky Court Asakusa

Asakusa View

HNAME

Asakusa

Hibiya
…
Imperial Hotel
Asakusa View

REGIONHNAME
regions

jyh
HNAME PRICE STATION

Tokyo Yoyogi 3000 Sangubashi

Tokyo International 3100 Iidabashi

Asakusa

Koiwa

Iidabashi

Sangubashi

STATIONPRICE
3000
3100
4500
5000

hostels
HNAME
Tokyo Yoyogi
Tokyo International
Sky Court Koiwa
Sky Court Asakusa

Figure 3.4 Query composition

Regardless of how the query is posed, the result is the list of hotels and hostels:
Asakusa View, Ryokan Shigetsu, Sky Court Asakusa, and Hotel Top Asakusa

Step 1 in the algorithm is to collect the substitutions for the composed query,
DRC 5.1. For brevity, we will only illustrate the composition of the relevant
substitution. The relevant substitutions are:

{<hotels("Asakusa View"/HNAME); regions("Asakusa View"/HNAME,

"Asakusa"/REGION); sites("Nakamise Dorsi"/SNAME, "Asakusa"/REGION)>;
<hostels("Ryokan Shigetsu"/HNAME, "Asakusa"/STATION); sites("Nakamise

Dorsi"/SNAME, "Asakusa"/STATION)>;
<hostels("Sky Court Asakusa"/HNAME; "Asakusa"/STATION); sites("Nakamise

Dorsi"/SNAME, "Asakusa"/STATION)>;
<hostels("Hotel Top Asakusa"/HNAME) "Asakusa"/STATION); sites("Nakamise

Dorsi"/SNAME, "Asakusa"/STATION)>}

Informally, in Step 2 of the algorithm, we find the variables applicable to the
composed relation, hostels and attribute those values against DRC 4.2. Yielding
the following substitutions:
{<rg("Ryokan Shigetsu"/HNAME)>;

 29

<rg("Sky Court Asakusa"/HNAME)>;
<rg("Hotel Top Asakusa"/HNAME)>;
<jyh("Sky Court Asakusa"/HNAME)>}

To complete the attribution composition, in Step 3, we combine the respective
substitutions:
{<hotels("Asakusa View"/HNAME); regions("Asakusa View"/HNAME,

"Asakusa"/REGION); sites("Nakamise Dorsi"/SNAME, "Asakusa"/REGION)>;
<rg("Ryokan Shigetsu"/HNAME, "Asakusa"/STATION); sites("Nakamise Dorsi"/SNAME,

"Asakusa"/STATION)>;
<rg("Sky Court Asakusa"/HNAME; "Asakusa"/STATION); sites("Nakamise

Dorsi"/SNAME, "Asakusa"/STATION)>;
<rg("Hotel Top Asakusa"/HNAME) "Asakusa"/STATION); sites("Nakamise

Dorsi"/SNAME, "Asakusa"/STATION)>;
<jyh("Sky Court Asakusa"/HNAME; "Asakusa"/STATION); sites("Nakamise

Dorsi"/SNAME, "Asakusa"/STATION)>}

This ultimately translates to the following relevant attribution:
{<hotels; regions; sites>; <rg; sites>; <jyh; sites>}

The process of composing an attribution by iteratively tracing backwards through the
constituent inputs is depicted in Figure 3.5.

In looking more closely at Examples 3.6 and 3.9, we see that certain data values, such as
the hostel "Sky Court Asakusa" may appear multiple times. This observation hints at a
second category of multiple derivations, those within a single expression.

We originally separated multiple derivations into two categories: derivations from
multiple expressions and derivations within a single expression. We can further separate
derivations from a single expression into cases of weak equivalence and cases of natural
join.

Weak equivalence encompasses the idea that tuples in a query result may differ only in
their attribution. A straightforward example of this occurs in the case of relational union.

30

sites

hostels
HNAME PRICE STATION

Tokyo Yoyogi 3000 Sangubashi

Tokyo International 3100 Iidabashi

Sky Court Koiwa 4500 Koiwa
Sky Court Asakusa 5000 Asakusa

AsakusaNakamise Dori

TsukijiSensoji Temple

HibiyaImperial Palace

…

REGIONSNAME

double

singleGinza Dai-Ichi

doubleAsakusa View

singleAsakusa View

PRICE
18000
20000
15000
25000

ROOMHNAME

hotels

Ryokan Shigetsu

Hotel Top Asakusa

Sky Court Asakusa

Asakusa View

HNAME

Asakusa View

Hibiya
Asakusa

Imperial Hotel
…

REGION HNAME

regions

Figure 3.5 Attribution composition: Step 1

Example 3.10 Weak equivalence in union
SQL 4.1 select * from hostels

SQL 4.2 select HNAME, PRICE, STATION from jyh
 union
 select HNAME, PRICE, STATION from rg

in SQL 4.1, there is one substitution associated with Sky Court Asakusa
g("Sky Court Asakusa"/HNAME, 5000/PRICE, "Asakusa"/STATION, "81-3-3672-

4411"/PHONE)

But in 4.2 there are TWO, one associated w/ querying rg (r) and one associated w/
querying jyh (s)
r("Sky Court Asakusa"/HNAME, 5000/PRICE, "Asakusa"/STATION, "81-3-3672-

4411"/PHONE);
s("Sky Court Asakusa"/HNAME, 5000/PRICE, "Asakusa"/STATION, "81-3-3672-

4411"/PHONE, "81-3-3875-4941"/FAX)} 
Similar behavior is exhibited when projecting a list of attributes that do not constitute a
candidate key.

Example 3.11 Weak equivalence in projection
SQL 3.2 select HNAME from hotels

 31

Pick one of the hotels in the result, for example. As seen in Figure 3.6, for each
HNAME in the relation hotels, There are two lists of substitutions:
{("Ginza Dai-Ichi"/HNAME, "single"/ROOMS, 15000/PRICE)>;
<("Ginza Dai-Ichi"/HNAME, "double"/ROOMS, 25000/PRICE)>} 

hotels
HNAME ROOM PRICE

Asakusa View single 18000

Asakusa View double 20000

Ginza Dai-Ichi single 15000

Ginza Dai-Ichi double 25000

Imperial Hotel single 34000

HNAME

Asakusa View

Ginza Dai-Ichi

Imperial Hotel

Dai-Ichi

Figure 3.6 Weak duplicates

Though logical models of relations, like the relational calculus, rely upon set semantics,
this theory of attribution treats every instance of a tuple as unique and having a distinct
attribution with respect to the query and underlying data sources. To preserve the set
semantics of the relational data model, attributions for weak duplicates are combined
together.

The second category of duplication, that occurs in single expressions, stems from looking
for relationships between relations (called a join operation) rather than taking the union
of different relations. Informally, we want to distinguish between comparisons on values
that represent the same thing and values that merely "look" alike.6 We call values that
represent the same thing duplicates. However, we would like to treat values that merely
"look" alike somewhat differently.

Example 3.12 Multiple derivations in joins.
To explore this issue, we will reconsider Q5 from earlier. However, this time, we
separate the query explicitly into:
Q6. Identify hotels around the Nakamise Dori and
Q7. Identify hostels around the Nakamise Dori.
These queries translate to SQL 6 and SQL 7, as indicated below. Separating the
queries this way will allow us to look more carefully at how values are compared
between tables.

6 We consider natural join as distinct from theta comparison where theta is equality. Natural join is
represented in the relational calculus as multiple occurrences of the same variable in two or more
predicates. In the (named) relational algebra, it corresponds to the idea that different relations may include
the same domain. Using a slight variation on the standard notation, this is represented by identical attribute
names in multiple relation schemes.

32

SQL6 select HNAME
 from hotels, regions, sites
 where hotels.HNAME = regions.HNAME
 and regions.REGION = sites.REGION
 and sites.SNAME = "Nakamise Dorsi"

SQL7 select HNAME
 from hostels, sites
 where hostels.STATION = sites.REGION
 and sites.SNAME = "Nakamise Dorsi"

We translate the above SQL queries into the following DRC expressions:
DRC 6 {HNAME | hotels(HNAME, ROOMS, PRICE) ∧ regions(HNAME, REGION) ∧

sites("Nakamise Dorsi", REGION)}

DRC 7.1 {HNAME | hostels(HNAME, PRICE, STATION) ∧ sites("Nakamise Dorsi",

STATION)}

DRC 7.2 {HNAME | hostels(HNAME, PRICE, STATION) ∧ sites("Nakamise Dorsi",

REGION) ∧ (STATION = REGION)}

(where DRC 6 and DRC 7.1 are the subformulas that we used in DRC 5 and DRC
7.2 is a logically equivalent expression to DRC 7.1

To find hotels around Nakamise Dorsi, we use geographic region names associated with
tourist attractions and also associated with the hotel addresses. Unfortunately, we do not
have such information available for the youth hostels. Instead, we match the regions for
the local tourist attractions with the names of railroad stations. This is illustrated in
Figure 3.7. The scalar values are the same, but they come from different domains. This
distinction is made explicit in the calculus by the distinction between multiple
occurrences of the same variable versus explicit equality. Consider a few of the
comprehensive substitutions for the expressions from Example 3.12.

comprehensive substitution for DRC 6
<"Asakusa View"/HNAME, "single"/ROOMS, 18000/PRICE, "Nakamise Dorsi"/SNAME,

"Asakusa"/REGION>

comprehensive substitution for DRC 7.1
<"Ryokan Shigetsu"/HNAME, 7000/PRICE, "Asakusa"/STATION, "Nakamise

Dorsi"/SNAME>

comprehensive substitutions for DRC 7.2
<"Ryokan Shigetsu"/HNAME, 7000/PRICE, "Asakusa"/STATION, "Nakamise

Dorsi"/SNAME, "Asakusa"/REGION>

The intuition is that multiple occurrences of the same variable constitute a single
substitution that derives from multiple sources. The substitution "Asakusa"/REGION in

 33

DRC 6 stems from two distinct sources; hotels and region. Explicit equality, by contrast,
suggests that the equated variables are different values with their own substitution. The
substitution "Asakusa"/REGION is equated with the substitution "Asakusa"/STATION in
DRC 7, but we do not consider these substitutions to share the same sources. The
relation hostels is not a source for "Asakusa"/REGION even though the variables are
equated and the relation hotels is considered a source.7 

regions

HNAME REGION
…
Imperial Hotel Hibiya

Asakusa View Asakusa

hostels
HNAME PRICE STATION

Tokyo Yoyogi 3000 Sangubashi

Tokyo International 3100 Iidabashi

Sky Court Koiwa 4500 Koiwa

Sky Court Asakusa 5000 Asakusa

SNAME REGION

Imperial Palace Hibiya

…
Sensoji Temple Tsukiji

Nakamise Dori Asakusa

sites

Figure 3.7 Multiple derivations in joins

Note the implicit equivalence between multiple occurrences of the same variable versus
the explicit built-in theta-comparison predicate (X=Y) in calculus expressions. We arrive
at this conclusion by substituting all occurrences of Y with X and eliminating the explicit
theta-comparison. Because our intuition for attribution makes use of the distinction
despite the implicit equivalence, we conclude that the different types of attribution are not
equivalent for equivalent expressions when we allow built-in predicates for explicit
equality.

Negation is the other place in which our observations on the attribution of equivalent
queries breaks down. Our intuition is that attribution corresponds to those substitutions
that correspond to a true interpretation. What then is the substitution that makes a
statement about the non-existence of something true? Applying the conventional
database interpretation of negation, we suggest that the way to prove a negative
substitution is by comparing that substitution to all known positive substitutions. If the
item of interest is not known to be true, we conclude that it must be false.8

7 Note that railroad station names and geographic region names may not always coincide. The example
here is intended to illustrate situations where values from different domains are used in comparisons and
query conditions, suggesting distinct lineage.
8 The negation as failure interpretation adopted in the database community suggests that a negated
subformula is true only when no true interpretation of the subformula is found (Ullman 1988).

34

Example 3.13 Negation

We take our original query and invert it.
Q8. Hotels NOT by the Imperial Palace. We can write this in SQL as:
SQL 8.1 select HNAME
 from regions
 where HNAME not in (
 select HNAME
 from regions, sites
 where regions.REGION = sites.REGION
 and sites.SNAME = "Imperial Palace")

One possible interpretation of this expression in the DRC is:
DRC 8.1 {HNAME | regions(HNAME, REGION) ∧ ¬(regions(HNAME, REGION) ∧

sites("Imperial Palace", REGION)}

The answer to DRC 8.1 is: Hotel Sofitel, Katsutaro, Asakusa View

We know that the Asakusa View is not by the Imperial Palace. What are the
corresponding substitutions into DRC8.1 indicating the truth of this? We need to
establish, in a positive sense, what hotels are by the Imperial Palace and then,
given a fixed list of hotels, (those in regions), we keep the remainder. This
process is depicted in Figure 3.8.

Consider, for brevity, just one comprehensive attribution for DRC 8.1:
<f("Asakusa View"/HNAME, "Asakusa"/REGION)
g("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME)
g("Imperial"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME)> 

To see some of the difficulty created by negation, consider an equivalent expression to
DRC 8.1, which we present in Example 3.14.

Example 3.14 Attribution equivalence breaks down under negation
DRC 8.2 {HNAME | regions(HNAME, REGION) ∧ ¬sites("Imperial Palace", REGION)}

DRC 8.2 is logically equivalent to DRC 8.1. The difference is that we have
pushed the negation down to the atoms and then distributed the conjuncts and
disjuncts.

Compare the comprehensive substitution associated with the hotel Asakusa View
that we examined in Example 3.13. Notice
<f("Asakusa View"/HNAME, "Asakusa"/REGION)
g("Imperial Palace"/SNAME, "Hibiya"/REGION)> 

 35

REGION
Hibiya
Hibiya
Hibiya
Tsukiji

SNAME

Imperial Palace

Tourist Information Center

Tsukiji Fish Market

Hama Rikyu Garden

HNAME

Dai-Ichi

Imperial Hotel

Hotels by the Imperial Palace

Hotels NOT by the Imperial Palace

Hotel Sofitel

Ginza Dai-Ichi
Grand Palace Hotel
Asakusa Prince

Asakusa View
HNAME

All Hotels

10000

39000

34000

25000

15000

20000

18000

PRICEROOM
single
double
single
double
single
double
single

hotels
HNAME

Asakusa View
Asakusa View
Ginza Dai-Ichi
Ginza Dai-Ichi
Imperial Hotel
Imperial Hotel
Dai-Ichi

Asakusa

Hibiya

Hibiya

UenoKatsutaro
Dai-Ichi Hotel
Imperial Hotel
Asakusa View

UenoHotel Sofitel
REGIONHNAME

regions sites

Figure 3.8 Negation in attribution

3.3 Levels of attribution
In our last two Examples 3.13 and 3.14 we examined only a subset of the substitutions.
In particular, we considered only those substitutions corresponding to the result that the
hotel Asakusa View is not by the Imperial Palace. This suggests that, rather than
speaking about the attribution for a query result, we might wish to consider attributing
only one part of the result. Returning to the analogy of a bibliography, perhaps the reader
is only interested in Part 1 of the thesis. As noted in the Introduction, Part 1 consists of
Sections 3, 4, 5, and 6. Taken together, these four Sections present our model of
attribution. However, our bibliography, which follows Section 9, is a single list of all
works referenced throughout the entire document. The reader might only wish to know
the works which were referenced in Section 3 – 6. Perhaps the reader is only interested
in Section 3.

And because we know that the result of one query can become the source for another
query (query composition), we extend the idea of attributing one part of the result to the
idea that we might attribute with only part of a source rather than attribute using the
relation as a whole. We refer to these ideas as result and source granularity respectively.

36

The general intuition is that attribution defines pointers or references from a query result
back to its constituent sources. Granularity therefore corresponds to the pointer's
precision. Beginning with result granularity, at the finest granularity, we might wish to
attribute a specific instance of a value in a result. More generally, we might think of all
instances of a value in a result. Further coarsening our granularity, we could consider the
attribution corresponding to a range of values (e.g. an entire tuple, a set of tuples, or
perhaps a column). At the limit, we could attribute the entire result relation.

Example 3.15 Result granularity
Consider Q9, Hotel names, hotel prices, and names of sites around Tokyo, Japan.
SQL 9 select HNAME, PRICE, SNAME
 from hotels, sites

DRC 9.1 {HNAME, PRICE, SNAME | hotels(HNAME, ROOM, PRICE) ∧ sites(SNAME,

REGION)}

As seen in Figure 3.9, we can discuss the attribution associated with the specific
instance of a result where HNAME = "Dai-Ichi" (corresponding to one tuple). Single
rooms by Ueno Park correspond to the following tuple: <"Dai-Ichi", 10000,
"Ueno Park">

The corresponding comprehensive attribution is:
{<f("Dai-Ichi"/HNAME, "single"/ROOM, 10000/PRICE, "Ueno Park"/SNAME,

"Ueno"/REGION)>}

We could ask for all instances of "Dai-Ichi" hotel in the result. Because the query is
a Cartesian product, the actual solution is quite large, but one part of it includes
Table 3.6 with the following substitutions:
{… < f("Dai-Ichi"/HNAME, "single"/ROOM, 10000/PRICE, "Yanaka"/SNAME,

"Ueno"/REGION)>;
f("Dai-Ichi"/HNAME, "single"/ROOM, 10000/PRICE, "Meji Jingu Shrine"/SNAME,

"Ueno"/REGION)>;
f("Dai-Ichi"/HNAME, "double"/ROOM, 80000/PRICE, "Imperial Palace"/SNAME,

"Hibiya"/REGION)>;
f("Dai-Ichi"/HNAME, "double"/ROOM, 80000/PRICE, "Tourist Information

Center"/SNAME, "Hibiya"/REGION)>; …} 

 37

Figure 3.9 Source/result granularity

hotels
HNAME ROOM PRICE

…
Imperial Hotel double 39000

Dai-Ichi single 10000

Dai-Ichi double 80000

Grand Palace Hotel single 10000

sites

SNAME REGION
Imperial Palace Hibiya
…
Ueno Park Ueno
Yanaka Ueno
Meji Jingu Shrine Ueno

Dai-Ichi 10000 Ueno Park

HNAME PRICE SNAME

…
Dai-Ichi Yanaka

Dai-Ichi Meji Jingu Shrine

Dai-Ichi Imperial Palace

Dai-Ichi

10000

10000

80000

80000 Tourist Information Center

Dai-Ichi 10000 Yanaka

Dai-Ichi 10000 Meji Jingu Shrine

Dai-Ichi 80000 Imperial Palace

Dai-Ichi 80000 Tourist Information Center

Table 3.6 Result granularity

Likewise, we might draw the parallel conclusions for source granularity. We could
attribute using a specific instance of a substitution (e.g. the source tuple that corresponds
to the specific instance of a substitution), all occurrences of a substitution in a particular
source (e.g. every tuple in a source that provides the substitution), or again at the
extreme, the name of the relation that corresponds to true substitutions.

Example 3.16 Source granularity
Throughout the Section, we have given answers for sources as relation names.
Using DRC 9 from Example 3.15, however, we can provide references to the
sources with varying levels of precision as well.

Attribution for DRC 9 as sources:
<hotels; sites>

We can also give:
hotels("Dai-Ichi"/HNAME)

which implicitly indicates all instances in the hotels relation where HNAME = "Dai-
Ichi"
{<"Dai-Ichi", "single", 10000>; <"Dai-Ichi", "double", 80000>}

38

or we can give an explicit instance of "Dai-Ichi" in the source relation
<hotels("Dai-Ichi"/HNAME, "single"/ROOM, 10000/PRICE)> 

Given that we expressed our intuition about attribution in terms of an expression and a
result, how might we express interest in the attribution for an explicit granule rather than
the relation as a whole, given that we have been thinking about attribution in terms of
answers to queries? Conceptually, we know that we can think of substitutions that make
a particular substitution for the free variables (one tuple in the result) true. However,
within our framework of attribution for relations, we might also take our cue from the
observation that the relational calculus is closed. Closure permits us, as demonstrated
earlier, to compose queries. At the same time, we know that we can compose attribution
as well. Consequently, if we want all instances or specific instances of values in the
result, we propose composing a query on the result and then composing the
corresponding attribution to return the attribution for the result granule of interest.

Example 3.17 Specifying granularity
We refer again to Q9 Hotel names, hotel prices, and names of sites around Tokyo,
Japan.
SQL 9 select HNAME, PRICE, SNAME
 from hotels, sites

Intuitively, if we are interested in a result granule defined as, all instances of
"Dai-Ichi" in the result, we think of something like:
DRC 9.2 {"Dai-Ichi", PRICE, SNAME | hotels(HNAME, ROOM, PRICE) ∧ sites(SNAME,

REGION)}

In other words, we want all substitutions in the answer where the HNAME is "Dai-
Ichi." We can construct just such a query if we think of:
DRC 10 {HNAME, ROOM, PRICE, SNAME | temp("Dai-Ichi", ROOM, PRICE, SNAME) ∧

(HNAME = "Dai-Ichi")}

Where temp(HNAME, ROOM, PRICE, SNAME)  {HNAME, ROOM, PRICE, SNAME |

hotels(HNAME, ROOM, PRICE) ∧ sites(SNAME, REGION)}

We might also think of a subset of instances of "Dai-Ichi" in the result. Consider:
DRC 11 {HNAME, ROOM, PRICE, SNAME | temp(HNAME, ROOM, PRICE, SNAME) ∧

(HNAME = "Dai-Ichi") ∧ (ROOM = "single") ∧ (PRICE = 10000)} 

Regardless of source granularity, the comprehensive attribution for a value in result tuple
is the same for every other value in the same tuple. This makes sense. A DRC
expression corresponds to a set of tuples. Therefore, one list of substitutions that makes
one instance of the expression true applies to every value in the corresponding result
tuple. Likewise, given relation-level source granularity, the comprehensive attribution
for every value in the result is the same. Again this makes intuitive sense. This merely

 39

articulates the observation that all of the relations in the WHERE clause of an SQL
statement apply to the relation as a whole.

Note by contrast that for source or relevant attribution, the attribution of different values
or tuples are not necessarily the same. In the UNION case, we saw how weak duplicates
illustrated a single tuple might have more than one source. As a more subtle case, refer
again to the Cartesian product of Q9. From Figure 3.9, we see how distinct sources can
associate with only a subset of attributes in a result relation.

In summary, we list the different features and properties captured by our model of
attribution and discussed throughout this Section. We present the model more formally
in Section 4 and subsequently propose an extension to the relational algebra to
operationalize one instantiation of our theory. In particular, we demonstrate attribution
using relation-level source granularity. We conclude Part 1 by considering how the
theory might extend into the semi-structured environment of the Web.

• Attribution refers to the substitutions that make the interpretation of the
expression true.

• In the case of negation, we use negation as failure semantics to establish that a
predicate does not hold.

• There are three distinct types of attribution: comprehensive, source, and relevant.
• There are a number of ways in which a query result might have more than one

attribution:
o Multiple queries for the same result
o Weak equivalence
o Strict equivalence (equivalent expressions using only base relations)
o Equivalence using composed data sources
o Weak duplicates
o Multiple instances of the same variable in an expression (e.g. natural join)

• For conjunctive queries with theta-comparisons but omitting explicit equality, the
comprehensive and source attribution of equivalent queries is equivalent.

• For positive queries, the relevant attribution of equivalent queries is equivalent
• We can compose the attribution of composed queries (where there is no more than

one level of negation) by recursively unfolding and attributing sub-queries in a
depth-first manner.

• Weak duplicates and multiple occurrences of the same value in different
predicates of a calculus expression (join variables in a natural join) entail multiple
derivations of the same row or column (tuple or attribute domain).

• Theta comparisons involving explicit equality represent different values, each
with their own, distinct derivation.

• We can attribute using different levels of granularity on the source side and
attribute different result granules.

40

• We specify the attribution of different result granules by composing queries on
the original result.

4 Formal model
In this Section, we present our formal model of attribution along with a number of properties
of the model. Section 1 offers a brief overview of the domain relational calculus for those
unfamiliar with the formalism. Section 2 introduces our definition of attribution in the
context of the syntax of a domain relational calculus expression. To formalize the model, we
begin with the set of conjunctive queries (defined below) and gradually expand the query
language in the standard way.9 We conclude the Section by relating the formal model back to
the desiderata originally specified in Section Two.

4.1 The domain relational calculus
Our formalization of attribution is based upon the Domain Relational Calculus (DRC). For
those already familiar with the DRC, we begin by specifying the calculus syntax and notation
used in the remainder of this thesis. For those unfamiliar with the DRC, we follow our
specification with a brief overview. The DRC is built upon, and our overview assumes, basic
familiarity with the first-order predicate calculus.

4.1.1 Syntax and notation

We use the set of lists notation for a relation. Following (Ullman 1988; 1989), at times, we
make selective use of variable names to denote attributes for readability. We define attribution
in terms of the interpretation (Maier 1983) of a safe DRC expression, where safety is defined
syntactically by (Ullman 1988).

A list of substitutions a = <c1/X1,c2/X2,…, cn/Xn> projected on a formula f, written a(f),
returns the sub-list of substitutions for the variables in f. A list of substitutions a is in the
attribution for an expression E = {x | f(x)} when a has the minimal number of substitutions
required to recursively interpret every sub-formula f'of f such that s(f) = c and I(f (c/x)) = true.

Furthermore, all expressions are assumed to be in Safe Range Normal Form (SRNF) and
Relational Algebra Normal Form (RANF) meaning negations are pushed down to atoms and
existential quantification and connectives are flattened (Abiteboul, Hull, and Vianu 1995).
We further assume, consistent with RANF, that formulas without negation are expanded into
prenex disjunctive normal form (DNF). Given the syntactic safety rules, each disjunct
therefore projects all and only the set of free variables in the expression.

As a shorthand, for expressions of the form:
{X1,X2,…,Xn | ∃Y1, Y2,…,Ym) f(X1,X2,…,Xn,Y1,Y2,…,Ym)}
We will sometimes substitute:
{X1,X2,…,Xn | (∃Y1,Y2,…,Ym) f(X1,X2,…,Xn,Y1,Y2,…,Ym)}
And when obvious, we will omit the existential quantification entirely:
{X1,X2,…,Xn | f(X1,X2,…,Xn,Y1,Y2,…,Ym)}

9 See (Ullman 1988) and (Abiteboul, Hull, and Vianu 1995).

42

Following (Ullman 1988), we use Extensional Data Base (EDB) to refer to base relations and
Intentional Data Base (IDB) to refer to relations composed on base relations (e.g. views).

4.1.2 A review of the calculus

Let D be a set of disjoint domains over which all relations are defined. A relational scheme is
a pair J,D where J is an index (a set of integers from 1 to maxJ) and D is a function, D: J
 D. A relation is then defined over a scheme as a finite subset of the Cartesian Product of
the domains in the scheme. A tuple is therefore a list of values where the Jth value is drawn
from the corresponding domain and a relation is a finite set of such lists.

In practice, the set-of-lists notation is equivalent to more conventional attribute-value naming
(Ullman 1988). Following Ullman and (Abiteboul, Hull, and Vianu 1995), where obvious to
do so, we may use carefully selected variable names to denote particular attribute domains.
We may then denote a relation scheme by a tuple instance consisting entirely of domain
variables, an ordered list of variable names (A1,A2, … ,AmaxJ) where each AJ is a variable
name for a value drawn from DJ.

Harkening back to our motivating example from Section 3, variable names might include:
NAME, PRICE, REGION, ROOM, STATION, etc.

Definition 4.1 Atomic formulas
Basic formulas in the domain calculus (also called atomic formulas) are expressed in terms of
relations, domain variables, and Θ, the set of comparison operators (e.g. >, ≥ , =, ≤, <) for
every domain in D.

1. If r is a relation in d with scheme (A1,A2, … ,An) then r(X1,X2,…,Xn) is an atomic
formula where Xi is either a domain variable for Di (e.g. of type Di) or a constant ci ∈
Di.

2. If X and Y are domain variables and c is a constant drawn from the appropriate
domain, then X θ Y, X θ c, and c θ X are all atomic formulae.

3. The Boolean constants true and false are also atomic formulae. 

Example 4.1 Atomic formulas
hotels(HNAME,ROOM,PRICE) is a predicate for the relation hotels
hotels('Asakusa View', 'single', 18000) is an atomic formula
hotels (HNAME, 'single', PRICE) is also an atomic formula as are
hotels.HNAME = regions.HNAME and PRICE < 90,000. 

Definition 4.2 Calculus formula
We recursively extend our definition of a calculus formula by building upon our atomic
formulae using the logical connectives (¬, ∧, ∨) and the quantifiers (∃, ∀) in a manner
similar to the predicate calculus.

 43

1. If f is a formula, then ¬ f is a formula.
2. If f and g are both formulas, then f ∧ g is a formula as is f ∨ g.
3. If f is a formula and X is a domain variable, then ∃X f and ∀X f are both formulas

where free occurrences of X in f are bound by ∃X and ∀X respectively using the
expected definitions for free and bound (Maier 1983 at 231; Ullman 1988 at 147).

4. If f is a formula, then (f) is a formula

The parentheses explicitly define groupings of operands as we might expect. In the absence
of parentheses, the quantifiers ∃X, and ∀X have highest, equal precedence. ¬, ∧, ∨ follow in
decreasing order of precedence. 

Example 4.2 Calculus formulas
If regions(HNAME, Hibya) is a formula, then ¬ regions(HNAME, Hibya) is a formula.
It therefore follows that (¬ regions(HNAME, 'Hibya')) is a formula.
(¬ regions(HNAME, 'Hibya')) ∧ hotels(HNAME,ROOM,PRICE) is also a formula.
Using the quantifiers in conjunction with parentheses can result in some subtly different
formulas.
∃HNAME(¬ regions(HNAME, 'Hibya')) ∧ hotels(HNAME,ROOM,PRICE) is not equal to
∃HNAME((¬ regions(HNAME, 'Hibya')) ∧ hotels(HNAME,ROOM,PRICE)). 

We offer a brief aside on the legality of formulas and note that domain variables should be
used consistently so that in the formula ∃X((¬ regions(X, 'Hibya')) ∧ hotels(X,Y,Z)), domain
variable X refers to the domain of lodging establishment names and the formula ∃X((¬
regions(X, 'Hibya')) ∧ hotels(Z, X, X)) is somewhat nonsensical (Maier 1983 at 231).

Given a formula f, we would like to know what that formula means. Following Maier, we
first define a substitution. We then arrive at an interpretation of f based upon a substitution
for the free variables in f and the expected meaning of the logical connectives and quantifiers.
The following definitions for substitutions and interpretations are the foundation of our
formalism for attribution.

The intuition behind the substitution is to recall that formulas are defined with respect to a set
of base relations called a database d. Atomic formulas for relation r in database d correspond
to base tables in d (or constraints that take the form of comparisons on values that appear in
one or more initial tables.) A substitution is a "random" replacement of all free variables in a
formula with constants from their corresponding attribute domains. An atomic formula
denoted by r(X1,X2,…,Xn) is true for all and only the substitutions (c1,c2,…,cn) that are in the
base table r ∈ d.

Definition 4.3 Substitution
More formally, let f(X1,X2,…,Xn) be a legal calculus formula as defined earlier where
X1,X2,…,Xn corresponding to their respective domains are the only free domain variables in f.

44

A substitution of a tuple (c1,c2,…,cn) in f(X1,X2,…,Xn) is denoted by f(c1/X1,c2/X2,…, cn/Xn)
where ci ∈ Di, the domain corresponding to Ai. We rewrite f, replacing every free occurrence
of Xi with ci. Ground atoms, atomic formulae containing only constants (ki) following the
substitution, are replaced with true or false as follows:

1. If the ground atom is a relation r(k1,k2,…,km) then replace the atom in the formula f
with true if tuple (k1,k2,…,km) ∈ r.

2. If the ground atom is a comparison ki θ kj then replace the atom in the formula f with
true or false as appropriate. 

Example 4.3 Substitution
Consider the following formulas based upon the travel database of Section 3:
f = sites(SNAME, REGION)
g = ∃ADDRESS (hr(HNAME, REGION, ADDRESS) ∧ sites(SNAME, REGION))

Suppose that the domain of tourist attractions included :

{'Imperial Palace', 'Yanaka', 'Fanueil Hall', 'Revere House', 'Tower of London'}

and that the domain of regions included:

{'North End', 'Beacon Hill', 'Hibiya', 'Asakusa', 'Ueno'}

then the following substitutions would be:
f('Imperial Palace'/SNAME, 'Beacon Hill'/REGION) = false
f('Revere House'/SNAME, 'North End'/REGION) = false10
g('Dai-Ichi'/HNAME, 'Yanaka'/SNAME, 'Ueno'/REGION) =

∃ADDRESS (hr('Dai-Ichi', 'Ueno', ADDRESS) ∧ true). 

Definition 4.4 Interpretation
The interpretation of a formula f with no free domain variables, written I(f), is recursively
defined as:

1.
2.

3.
4.
5.

6.

7.

If f is true or false then I(f) is true or false.
If f is ¬ g and g has no free variables, we say if I(g) is true, I(f) is false. Otherwise,
I(f) is false.
If f is g ∧ h then I(f) is true when both I(g) and I(h) are true and false otherwise.
If f is g ∨ h then I(f) is false when both I(g) and I(h) are false and true otherwise.
If f is ∃X(A)g where only X is free in g, then I(f) is true when there is at least one value
ci ∈ dom(A) for which I(g(c/X)) = true.
If f is ∀X(g) where only X is free in g, then I(f) is true when for every value ci ∈
dom(A) for which I(g(c/X)) = true.
If f is (g) then I(f) = I(g). 

10 note that the Revere House may indeed be in the North End, but this is not a fact in the relation sites.
Therefore the predicate evaluates to false.

 45

Definition 4.5 Domain relational calculus (DRC) expression
A calculus expression has the form {X1,X2,…,Xn | f(X1,X2,…,Xn)} where, as indicated above,
f(X1,X2,…,Xn) is a legal calculus formula and X1,X2,…,Xn corresponding to attributes A1,A2, …
,An are the only free domain variables in f. The value of an expression E on database d is
therefore a relation r having scheme J,D for tuples of the form (A1,A2, … ,An) and containing
all tuples (c1,c2,…,cn) where ci ∈ Di and I(f(c1/X1,c2/X2,…, cn/Xn)) = true. 

Example 4.4 A query as a domain relational calculus expression
We can translate the query which regions have a station or tourist attraction? Into the following
expression:
{REGION | ∃SNAME, STATION (sites(SNAME, REGION) ∨ trains(STATION, REGION))} 

A domain calculus expression is therefore merely one way of articulating a query over a set of
base relations. The expression {X1,X2,…,Xn | f(X1,X2,…,Xn)} is a query for all tuples in the
database that satisfy the query constraints in f. The answer to the query is a relation whose
schema is (A1,A2, … ,An).

There is one significant problem with this definition of expressions and interpretations.
Relations are defined as finite subsets of the Cartesian product of the domains D1 × D2 × … ×
Dn. However, domains themselves could be infinite.11 The problem arises when we attempt
to find an interpretation for legal calculus expressions that query infinite domains, possibly
producing infinite relations.

Example 4.5 Negation and infinite relations12
In Q8 of Section 3, we asked, "List all hotels that are not in the same region as the Imperial Palace
in Tokyo, Japan." Knowing that the Imperial Palace is in the Hibiya region of Tokyo, consider
a simpler variant on this query which asks "List all hotels that are not in the Hibiya region of
Tokyo." We might translate this query into the following calculus expression:

 {HNAME |¬regions(HNAME,'Hibiya')}.13

11 Consider the domain for the attribute price from our earlier examples. We certainly would not want the
database to set an arbitrary bound on the maximum price a hotel could charge for one night's stay. Likewise, the
domain for the attribute name might include hotels from around the world including "Le Meridien, Boston" in
Boston, MA and the "Warwick Hotel" in Philadelphia, PA. The Cartesian product of name and price includes
all possible permutations of hotels worldwide and an infinte range of prices. However, as indicated in our
example database from Section 3, the relation hotels contains a finite subset of hotel names corresponding to
establishments in Tokyo, Japan and only the corresponding prices charged by those Tokyo hotels.
12 We use the example of negation here, but similar problems exist for interpreting existential and universal
quantification. See [Maier, 1983 #16 at 244-49.
13 {name |¬regions(name,"Hibiya")} is shorthand. The formal expression would be {name|∃ region (¬
(regions(name,region)) ∧ (region = "Hibiya"))}. Because "Hibiya" is the only possible substitution for region,
we remove the existential quantifier and substitute "Hibiya" as a constant in the remaining expression.

46

The answer, of course, is the presumably rather large set of substitutions for HNAME, (c/name)
such that (c, 'Hibiya') is not a pair in table regions. 

To address the problem of infinite relations, we reach beyond the predicate calculus
framework to further restrict the types of expressions that we consider evaluable. This
concept is called safety.14 The general intuition behind safe calculus expressions is that
interpretation of domain variables somehow be explicitly constrained to some finite set of
values. To guarantee this, we claim that value(s) which make the expression true must come
from a domain consisting of all values that appear either in the constants or in the (finite)
relations mentioned in the query.15

Example 4.6 Limited expressions
Rewrite the previous example to "bind" to a finite domain. In this case, we use Hibiya:
NAME | REGIONregionsNAME, REGION  REGION = 'Hibiya'

Both the quantified variable region and the free variable name are limited by relation regions.
In evaluating the existential quantifier, although the domain for variable region might be
infinite, we need only consider values that appear in regions. Likewise, we only consider
possible names that appear in regions. 

Definition 4.6 Safe DRC
Formally, we define the construction of a safe DRC formula following Ullman (1988; 1989)
as one where every free variable must appear in at least one non-negated atomic formula that
corresponds to a finite relation.
1. There are no uses of universal quantification.
2. Disjuncts must have the same set of free variables.
3. For a maximal subformula that is the conjunction of one or more formulas F1 ∧ F2 ∧ … ∧

Fm, variables free in any Fi must be limited such that
3.1. A variable is limited if it is free in a formula Fi that is not a comparison and is not

negated.
3.2. If Fi is a comparison X=c then X is limited.
3.3. If Fi is a comparison X=Y and Y is limited then X is limited.

4. A negated formula is unsafe unless it appears in a disjunct with one or more non-negated
conjuncts and the free variables in the negated formula are limited as per rule 3. 

Fortunately, it turns out that these limitations do not compromise the expressiveness of our
queries with respect to the algebraic relational operators with which users are typically aware
and which we use as a reference (relational completeness).16 Consequently further references
to the DRC will refer to the safe-DRC unless explicitly noted otherwise. In particular, we will
use the DRC and the value of an expression to formally define our concept of attribution.

14 There is a more general notion of safety that does not contribute to our definition of attribution and so is
overlooked. See "limited evaluation" in [Maier, 1983 #16]or "domain independence" in (Ullman 1988).
15 (Maier 1983)
16 See (Ullman 1988 at 153) for a proof on the equivalence of the safe DRC and the relational algebra.

 47

4.2 Attribution and the DRC
We initially suggested that the intuition for attribution was somehow related to an
interpretation for the logical expression of a query. We can now be slightly more specific
about that idea. A relation r is the result of a query Q denoted by the DRC expression
{X1,X2,…,Xn | f(X1,X2,…,Xn)}. The attribution of the tuples (c1,c2,…,cn) of r when Q is
evaluated on database d, denoted Attr(r, (c1,c2,…,cn), Q, d) is related to the set of substitutions
f(c1/X1,c2/X2,…,cn/Xn) such that I(f(c1/X1,c2/X2,…,cn/Xn)) = true.

This must seem rather tautological. The attribution of a relation is somehow the relation
itself. Therefore, we develop the idea by first considering attribution for conjunctive queries
and then iteratively refining the model over progressively more general classes of queries.

4.3 Conjunctive queries
We begin the construction of our attribution model by first limiting the range of possible
queries to the class of conjunctive queries (CQ). Were we to limit our model to conjunctive
queries, attribution would still prove quite useful, for we know that CQ correspond to the
class of all SQL queries constructed using selection-on-equality, project, and natural join
(Maier 1983; Ullman 1988).

We define three different types of attribution for CQ expressions. After providing a definition
for attribution equivalence, we confirm the equivalence of the attribution for equivalent CQ
expressions. An algorithm for composing the attribution of an expression by iteratively
drilling down through IDB is presented. We verify that composition produces the same
attribution as the equivalent, unified query expressed only on EDB. Finally, we present some
remarks on attribution granularity. We note the parallel between attributing some subset of
values in a result and attributing using only some subset of values in the input sources.

4.3.1 Attribution concept

We first define the term conjunctive query and then develop our model by considering our
original intuition for attribution as a set of substitution lists for the variables in the expression.

Definition 4.7 Conjunctive query
A conjunctive query is an expression of the form:

X1,X2,…,Xn | Y1,Y2,…,Ym fX X1,X2,…,Xn,Y1,Y2,…,Ym

constructed from a subset of the DRC, as defined earlier, consisting only of domain variables,
constants, predicates that represent relations, conjunction, and existential quantification.17 

17 Because we can rewrite r(X1,X2,…c…,Xn) as the formula (r(X1,X2,…Y…,Xn) ∧ (Y = c)) we see that conjunctive
queries permit a safe or limited form of equality through multiple occurrences of the same variable in multiple
conjuncts. See (Ullman 1988).

48

Example 4.7 Conjunctive queries
Conjunctive queries from the examples in Section 3 are:

E1 = {HNAME | hotels(HNAME, ROOMS, PRICE)}
E2 = {HNAME | hostels(HNAME, PRICE, STATION) ∧ sites("Nakamise Dorsi", STATION)}
E3 = {HNAME | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧

hotels(HNAME, ROOMS, PRICE)} 

If attribution consists of the set of substitutions for all variables in the expression, as
demonstrated in Example 4.3, then attribution appears to combine a number of distinct
concepts together at once. For example, there are a number of relations and variables used to
determine the result that are not reflected in the set of free variables. Specifically, how do we
know that the Imperial Palace and the hotels in our answer are in the same region? We need
to know what region the Imperial Palace is in and what region each of the hotels are in. More
generally, distinct information is conveyed in various subsets of the free and bound variables.

4.3.2 Types of attribution

Combinations of free and bound variables in the expression correspond to the intuition
introduced in Section 3 that there are different types of attribution depending upon a particular
user's interest. In this thesis, we will address three distinct subsets of the set of all variables
and constants in an expression.

Perhaps the simplest attribution is that which we demonstrated in Section 4.3.1. From an
intellectual property or remuneration perspective, knowing all of the values and variables
used, irrespective of the role they play in answering the query, is significant.

Definition 4.8 Comprehensive attribution
The comprehensive attribution for the relation represented by a CQ expression r =
{X1,X2,…,Xn | (∃Y1,Y2,…,Ym) f(X1,X2,…,Xn,Y1,Y2,…,Ym)} is a set of pairs where each pair is a
substitution list a for all of the variables in f that make f true, and the formula itself. We will
sometimes write this as {f(a)} or where pi is a predicate in f and ci is a constant, we might
write {<pi(ci)>} 

Note that for CQ expressions, a minimal list of substitutions must interpret every predicate in
the expression as true. For an expression with m + n variables, the substitution list must have
m + n substitutions.

For E1 in Example 4.7, a substitution a in the comprehensive attribution will provide values
for the variables, HNAME, ROOMS, and PRICE. In addition to identifying all sources consulted
in the query, both a unique substitution list and the set of lists convey additional information.
In distinct substitution lists for CQ expressions, the same variable can recur in multiple
predicates of the same formula. Multiple predicates correspond to multiple sources as in the
case of an attribute used in a natural join. Note also that two distinct substitution lists might
have the same values for all free variables Xi and differ in at most one existentially quantified

 49

variable Yj hinting at the issue of multiple derivations raised in Section 3. From Example 4.7
we see that each answer in the result is attributable to two distinct substitutions. We will say
more about multiple sources below.

A second type of attribution focuses on only the free variables in an expression rather than the
set of all variables. Every occurrence of a free variable Xi in a distinct predicate p of a CQ
corresponds to a source for Xi.

Definition 4.9 Source attribution
The source attribution for the relation represented by a CQ expression r = {X1,X2,…,Xn |
(∃Y1,Y2,…,Ym) f(X1,X2,…,Xn,Y1,Y2,…,Ym)} is the set of pairs where each pair is a substitution
list a for all variables in predicates of f that contain free variables and make f true, and the
formula itself. 

A user interested in data quality characteristics of the answer that depend upon the sources
from which the values in the answer are drawn, such as timeliness or accuracy, will examine
the source attribution for the query result.

A third type of attribution concerns relevant sources. The quality of an answer to a query
might depend not only upon values reflected in the result but also upon values used in
evaluating query (restriction) conditions. We referred to this distinction in Section 3 as the
difference between the quality of the answer to the query and the quality of a value in the
answer.

The general intuition behind relevant substitutions is that omitting or changing one of these
substitutions could increase or decrease the subset of domain values for any given free
variable, corresponding to an attribute in the result.18 In Example 4.7, were we to alter the
condition "SNAME = 'Imperial Palace'" the query result would certainly differ.

Definition 4.10 Relevant attribution
The relevant attribution for the relation represented by a CQ expression r = {X1,X2,…,Xn |
(∃Y1,Y2,…,Ym) f(X1,X2,…,Xn,Y1,Y2,…,Ym)} is the set of pairs where each pair is the formula f
and a substitution list a for all relevant variables in f that make f true. We use the term
relevant to capture constraints on the attribute domains represented by the variables in the
head of the expression. All variables in the head (free in the formula for the expression) are
relevant. In addition, a bound variable is relevant to the result if renaming the variable to
some name not already in the expression (or eliminating a constant) would relax a constraint
on one or more of the attribute domains in the result relation (free in the formula for the
expression). 

18 Note explicitly the distinction between restriction conditions and existence conditions represented by Cartesian
product. We say more about this in the discussion on result granularity below.

50

Example 4.8
Consider again the CQ expressions from Example 4.7

E1 = {HNAME | hotels(HNAME, ROOMS, PRICE)}
E2 = {HNAME | hostels(HNAME, PRICE, STATION) ∧ sites("Nakamise Dorsi", STATION)}
E3 = {HNAME | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧

hotels(HNAME, ROOMS, PRICE)}

In addition, consider the more general CQ expression with domain variables as follows.
E4 = {A | p(A,B,C)  q(C,D,D)  r(F,G,H)  s(H,J,J)}

Only HNAME is relevant in E1. HNAME, a free variable, is relevant in E2. STATION is also
relevant in E2. If we renamed the instance of STATION in relation sites, our new expression
might appear as E2 = {HNAME | hostels(HNAME, PRICE, STATION) ∧ sites("Nakamise Dorsi",
STATION2)} and the join condition would no longer constrain the possible values of HNAME.
Likewise, the substitution "Nakamise Dorsi"/SNAME constrains values of HNAME by placing a
bound on the values for STATION which in turn restrict HNAME. Only ROOMS and PRICE are
not relevant in E3. The quality of each answer in E3 depends upon our knowledge of where
the Imperial Palace is located in relation to each of the different hotels. In E4, neither domain
variable J nor domain variable H are relevant. Renaming one instance of H would alter the
join condition between the relational predicates r and s. However, while these predicates
pose an existence constraint on a tuple of the result set, they do not constrain the domain (and
by extension, the quality) of values in the result set. 

We have defined attribution to provide variants on the different sources used to evaluate the
answer to a query. However, there is often more than one way to ask a question. Likewise,
there are often different ways of answering the same question. In the next subsection, we
consider multiple derivations.

4.3.3 Multiple derivations – the concept

The concept of multiple derivations addresses the observation that we can arrive at the same
answer for the same question in different ways. First, we might ask the same question in
different ways (equivalent queries). Second, a single query can produce identical answers in
different ways.

Assuming the standard, containment-based definition for equivalent queries (Ullman 1989),
we further divide the expression of equivalent query expressions into two categories: queries
defined on a database comprised of base tables (Extension Data Bases EDB) and queries that
also make use of relations defined in terms of other relations (Intensional Data Base IDB)
(Ullman 1988). We refer to these as strict equivalence and composition respectively.

We call equivalent expressions defined on the same, extensional database strict equivalents.
We first saw an example of strict equivalence in Example 3.5 of Section 3. Now, we adopt a
more abstract representation to help generalize the concept.

 51

Example 4.9 Strict Equivalence
Consider the following CQ expressions:

E5 = {X | p(X,Y,Z)  p(U,V,W)}
E6 = {Z | p(Z,Y,U)}

Expressions E5 and E6 are syntactically different, yet they are equivalent. 

For equivalent queries defined using both intentional and extensional relations, we use the
term composition. We first saw an example of Composition in Example 3.9 of Section 3.
Now, we provide a more abstract representation.

Example 4.10 Composition
Consider the following CQ expressions:
Assume relation s(U,V,W)  {U,V,W | p(U,V,X)  q(W,X,Y)}
and assume relation E7 = {S,V | s(U,V,W)  r(S,T,U)}.
We can then find a unifier such that E7' = {S,V | p(U,V,X)  q(W,X,Y)  r(S,T,U)}. 

While equivalent queries lead to identical results, we might also think of a single expression
producing identical results. For conjunctive queries, consider the same value appearing in
different predicates as in the case of natural join. Natural joins in conjunctive queries were
introduced in Q6 of Example 3.12 in Section 3. Here, we again offer a more abstract
representation.

Example 4.11 Natural joins
E8 = {X | p(V,W,X)  q(X,Y,Z)}

Any substitution for the formula in E8 must include c/X, suggesting that the relations
represented by predicates p and q are both sources for c. 

Within a single relation we might also think of different sources when we consider non-key
values recurring in multiple tuples. We spoke of weak equivalence and defined weak
duplicates in Example 3.11 of Section 3. More generally, consider:

Example 4.12 Multiple instances of the same value
E9 = {Y | p(X,Y,Z)} where we assume no functional dependencies (or only the trivial dependency
where XYZ → XYZ). Then, there may well be multiple values of Y corresponding to
multiple tuples <X,Y,Z> in predicate p. 

In describing the issue of multiple derivations for an answer from the same query expression,
we allude to the idea that a variable substitution might apply in more than one predicate, and
that a single predicate may have duplicate, non-key values. Both issues suggest that there
may be more to granularity than a list of substitutions in the formula for a query expression.
We may be interested in a specific value (join-attribute or non-key value), and we may wish
to distinguish between different substitutions in same attribution set. Issues of result and
source granularity are addressed beginning in Section 4.3.7.

52

4.3.4 Multiple derivations from different expressions – strict equivalence

Our general intuition for attribution equivalence is that the substitutions are the same. In
other words, equivalent comprehensive attributions should provide the same interpretation for
the same expressions. Source and relevant attributions should be equally comparable. In the
case of strict equivalence, if two conjunctive queries E1 and E2 are equivalent, then there is a
containment mapping from E1 to E2 and from E2 to E1 (Ullman 1989). These containment
mappings map predicates and variables between E1 and E2 and satisfy our intuitions about
equivalent comprehensive, source, and relevant attributions. We therefore conclude that
under different types of attribution, the attribution of equivalent CQ-expressions are
equivalent.

First, we provide more formal definitions for what is meant by [comprehensive | source |
relevant] attribution equivalence.

Definition 4.11 Attribution equivalence
Two attributions A1 and A2 are equivalent when there is a mapping for every variable and its
corresponding predicates from A1 to A2 and from A2 to A1. 

Example 4.13 Attribution equivalence
Consider again Example 4.9.

E5 = {X | p(X,Y,Z)  p(U,V,W)}
E6 = {Z | p(Z,Y,U)}

We say that the comprehensive attribution AC5  AC6 because the containment mapping from E5
to E6 and vice versa, establishing the equivalence of E5 and E6, also maps the attribution
substitutions.

The mapping establishing the equivalence of source attribution AS5  AS6 is just the
containment mapping for the free variables in E5 and E6. Likewise for the equivalence of
relevant attribution AR5  AR6. The mapping indicates that there is no free variable for a
relational predicate p in E5, that is not mapped in E6. This will cause a problem once we add
the union operator () into the query language. 

Given our definitions of equivalence, we then propose

Theorem 4.1 Attribution equivalence
If E1 and E2 are equivalent CQ expressions, then their [comprehensive | source] attributions,
A1 and A2, are equivalent. If E1 and E2 are minimal, then attribution equivalence holds
trivially for comprehensive, source, and relevant attribution.

Lemma 4.1 Comprehensive attributions of equivalent CQ expressions are equivalent.
This is trivially true by the definition of equivalence between E1 and E2.

 53

Lemma 4.2 Source attributions of equivalent CQ expressions are equivalent.
Because the queries are equivalent, we know that the two expressions define the same
relation. Therefore, in a CQ expression, the mapping must take the predicates containing free
variables in E1 to the predicates containing free variables in E2 and vice versa.

Lemma 4.3 Relevant attributions of minimal, equivalent CQ expressions are equivalent.
We know that a mapping h from relevant variables in E1 to variables in E2 exists by
equivalence. We need to verify that h maps all relevant variables in E1 to relevant variables in
E2 and vice versa. From our definition of relevance, we know that we can exclude any
redundant relational predicate as inherently irrelevant. Moreover, we know, from the query
optimization literature, that removing redundant predicates from equivalent CQ expressions
results in a unique, minimal equivalent CQ expression (Ullman 1989). As a consequence, the
relevant attribution of equivalent CQ expressions is trivially equivalent because they are the
same. Note that this claim assumes the absence of functional dependencies in the relation. If,
for example, a relation has two disjoint candidate keys, then an expression that constrains one
candidate key could be equivalent to an expression that constraints the second candidate key.

By Lemmas 4.1, 4.2, and 4.3, we conclude that the comprehensive and source attributions of
equivalent queries is equivalent while the attributions of the minimal equivalents of
equivalent queries are identical. 

4.3.5 Multiple derivations from different expressions, composition

A second way in which we get different expressions for the same query is when some
predicates are defined in terms of others. As seen in Section 4.3.3, when we allow intentional
databases (IDB), equivalent CQ-expressions can introduce new predicates and variables. We
define the attribution of an expression involving IDB by rewriting the expression in terms
only of the base data sources following the process of Unification in datalog queries (Ullman
1988).

The principle of composition establishes that, instead of re-writing the query, we may
determine the attribution for composed queries in a recursive manner. First determine the
attribution A in terms of both EDB and IDB. Extend each substitution ai  A as follows.
Treat every reference to an IDB as an independent CQ expression; extend ai by attributing
each IDB. For successive unfoldings, assuming that no recursive definitions are allowed, we
eventually arrive at the attribution for the initial expression in terms of base data sources.

Example 4.14 Attribution composition
E1 = p  q  r
r  E2 = s  t
E3 = p  q  s  t

Step 1. Get the attribution for E1 in terms of p, q, and r.

54

Step 2. Project the substitution list from Step 1. onto r.
Step 3. Attribute Step 2. on the expression for r.
Step 4. Combine the attribution from Step 3. to the attribution from Step 1. 

More generally, we propose a CQ expression E' for a database d of the form:
 p1  p2  …  pn  q1  q2  …  qm
where pi is a predicate for a relation ri  d and j, qj is a predicate for a relation rj  d and qj
is defined by a CQ-expression over predicates pi.

Definition 4.12 Attribution of a composed expression
The attribution of the result r from E' defined on d' in terms only of relations in d, is defined
as attr(r, E, d) where d explicitly excludes j, predicates qj and E is the re-write of E' in terms
of d. 

It follows that we can build progressively deeper layers of indirection by defining a set of
predicates rk defined in terms of pi's and qj's and so forth resulting in correspondingly more
complex re-writes.

While re-writing provides us with a consistent definition for the attribution of expressions in
the presence of views and base relations, it presents some pragmatic challenges. Neither user
nor system may initially be aware of underlying data sources. Users may be uninterested in
pursuing the attribution of certain intermediate-level sources. Rather than re-writing the
entire query a priori, we would prefer to attribute by iteratively unfolding successive layers of
IDB as necessary.

Algorithm 4.1 Attribution composition

Compose A, f  (1)
if f has no q's then return A (2)
else pick qi, an IDB in f (3)
 f  p1  p2  …  qi-1  qi+1…qm (4)
 Compose Unfold A, qi, f  (5)

Unfold A, q  (6)
if A is ∅ then return   (7)
else pick a,f  A (8)
 let g be the formula for IDB E representing q (9)
 let u be the unifier for h  unifyf,g (10)
 let E' be E as defined by g with the renaming of u (11)
 B = attr aq/x, E', d' (12)
 Rewrite B, ua  aq, h  Unfold A  a,f, q  (13)

Rewrite B, a, h  (14)

 55

if B is ∅ then return   (15)
else pick b,g  B (16)
 a  b,h  Rewrite B  b,g, a, h (17) 

We use Compose A, f to recurse through the IDB in f. For each IDB, we find the definition
for the IDB in line (9) and find a unifier in line (10) to be certain that we can rename variables
appropriately. In line (11), we rewrite the expression for the IDB accounting for the variable
renaming and call this E'. Finally, we attribute the specific tuple in the IDB by pushing
constants from the original substitution into the corresponding variables of E'. We denote this
as E'aq)/x in line (12). Because this attribution itself returns a set of substitution - formula
pairs, we replace the original substitution in A with the set of substitutions from the attribution
of E'. Note in line (17) where the set of new pairs uses the unified formula h and combines
the original substitution a with substitutions for the IDB b. Line (13) simply removes the
duplicate substitutions.

Theorem 4.2 Attribution composition
Attribution composition computes the attribution of a composed expression.

Assume without loss of generality the following CQ expressions E1, E2, E3 defined by the
formulas f, g, and h respectively s.t.
E1  f  p1  p2  …  pn  q where q is the only IDB in E1
E2  q  g   r1  r2  …  rm where ri  d
E3  h   p1  p2  …  pn  r1  r2  …  rm

Note that the formula g for E2 already has variables renamed and reordered as in Line (10)
and (11) so that references to E2 in the proof below correspond to E' in Line (12).

Given E1 defined on d' d  q and r, the result of evaluating E1 on d', attribution
composition computes the [comprehensive | source | relevant] attribution of result r in terms
of d as defined by attrr, E3, d.

Lemma 4.4 a3,h  A3 is a comprehensive attribution for E3 if and only if a3,h 
ComposeE1,f .

Case 
Pick a random substitution a3,h  A3 and split it: Project a3 onto f and g.
We know that a3f  a1  A1 because i, Ipia3pi/x  true and j, Irja3rj/x  true
where q is defined by the rj's. Similarly, we know that a3g  a2  A2'  A2 where A2' as the
attribution for the tuple defined by a1  a2, a tuple in q.
Compose passes A1 to Unfold. Unfold calls attr a3q, E2, d' which looks for
substitutions of E2 with a3q pushed into the expression. Attr a3q, E2, d' is A2'  A2
because the attribution of E2  A2 and a1g makes E2 true therefore A2'  A2.

56

Unfold is applied to every value of A1 so certainly it calls itself on a1.
Unfold calls Rewrite with a1 and A2'.
Rewrite is applied to every element of A2' so certainly is is applied to a2.
But Rewrite takes h, the unification of f and g, and returns a1  a2 which is a3.
Case 
If unifyf,g  h, does every pair a1  a2, h appear as a substitution in A3? Pick some
arbitrary a1 from a pair in A1. Now we cannot pick just any a2. Compose creates A2' from
attr a1g, E2, d'. So pick any a2 from a pair  A2'. We know a1  a2 paired with h appears
in A3 if it makes E3 true. i, Ipia1pi/x  true and j, Irja2rj/x  true. But are E1
and E2 true at the same time (i.e. do they make h true)? Because we know a2 is from a pair in
A2' by construction, we know that a2 makes E2 true for a true interpretation of A1. Therefore,
we know that a1  a2, h  A3. 

Lemma 4.5 a3,h  A3 is a source attribution for E3 if and only if a3,h  Compose
A1,f where A1 is the source attribution for E1.

Case 
Pick a random source attribution a3,h  A3 and split it: Project a3 onto f and g. These are
just the free variables in E3 and accompanying variables that identify unique instances of
tuples containing a particular value for a free variable. We know as before that a3f  a1,f 
A1 because for the predicates pi, E1  E3 and for predicate q, because q is defined in terms of
the predicates rj, we know that the free variables for q are also assigned in a3f. Similarly,
we know again that a3g  a2,g  A2'  A2 where A2' as the attribution for the tuple defined
by a1  a2, a tuple in q.
Compose passes A1 to Unfold with q  E2 with formula g.
Unfold is called on every value of A1 so certainly it is called on a1.
Unfold calls attr a1g, E2, d' which we know is A2'  A2 because the attribution of E2 
A2 and a1g makes E2 true therefore A2'  A2.
Rewrite is called for every element of A2' so certainly it is called for a2.
But Rewrite takes h, the unification of f and g and returns a1  a2 which is a3.

Case 
If unifyf,g  h, Does every pair a1  a2, h appear as a substitution to a relational predicate
containing a free variable in A3? Pick some arbitrary a1 from a pair in A1. Now we cannot
pick just any a2. Compose creates A2' = attr a1g, E2, d'. So pick any a2 from a pair  A-
2'. We know a1  a2 paired with h appears in A3 if it makes E3 true. i, Ipia1pi/x  true
and j, Irja2rj/x  true. But are E1 and E2 true at the same time (i.e. do they make h
true)? Because we know a2 is from a pair in A2' by construction, we know that a2 makes E2
true for a true interpretation of A1. Therefore, we know that a1  a2, h  A3. 

 57

Lemma 4.6 a3,h  A3 is a relevant attribution for E3 if and only if a3,h  Compose
A1,f. Where A1 is the relevant attribution for E1.

This is more complicated because we need to verify that relevantE3  relevantE1 
relevantE2' where relevantE2'  relevantE2 and relevantE refers to the relevant
variables in E and likewise for freeE; boundE. We form relevantE2' as we formed A2'
previously. We attribute only the relevant variables in q on the expression E2. For
convenience, we assume that the CQ expression is minimal.

Case 
Pick some relevant attribution a3,h  A3 and split it: Project a3 onto f and g.
We need to establish that a3f  a1,f  A1 and a3g  a2,g  A2'  A2 where A2' as the
attribution for the tuple defined by a1  a2, a tuple in q.
A substitution cX is in a substitution list for a3 because either X is free in E3 or c/X joins two
relational predicates, at least one of which is recursively joined to a relational predicate
containing a free variable or is a constant from the original query expression that appears in a
relational predicate recursively joined to a predicate containing a free variable of E3.

Case 1. X  relevantE3 and X  freeE3. FreeE3  X  freeE1  relevantE1 by
definition of the equivalence of E1 and E3.
for X  freeE3  Y  freeE2, Y must also be free in E1 because E2 is q in E1 (e.g. Y 
freeE2  Y  freeE1). Consequently, at least for the relevant variables in E2 that are free,
we know a2  A2'  A2

Case 2. X  relevantE3 joins relational predicates to a recursively joined set of relational
predicates or X constrains one predicate in a recursively joined set of relational predicates
(e.g. X is a constant or X appears multiple times in a single relation). All such predicates are
in the set pi and at least one joined predicate contains a free variable in h. Then X is relevant
in E1 so a3f  a1 for a1,f  A1.

Case 3. X  relevantE3 is like Case 2 except all such predicates are in the set rj. Then X is
relevant in E2 so a3g  a2,g  A2'  A2 where A2' as the attribution for the tuple defined by
a1  a2, a tuple in q. (Recall that g  q in E1).

Case 4. X  relevantE3 appears in both some predicate pi and some predicate rj. Then X
must appear in predicate q of E1 (X is not free in E1 so it must be bound in E1 and appear in q
in order to appear in both pi and rj in E3). Therefore X is relevant in E1 so a3f  a1 for a1,f
 A1.

58

It is possible that a3g is empty, which occurs when we consider a Cartesian Product and
then do not restrict variables between arguments to the Cartesian Product. In this case,
attribution relevance is trivially true in the pi's.

From here, we do the same unfolding as before and conclude that Compose returns a1  a2
which is a3.

Case 
Pick some random substitution list a1  a2 as before and verify that a1  a2,h  A3.
Proof by contradiction. Suppose not. Then there must be a substitution cX  a1  a2, cX 
a3, or cY  a3, cY  a1  a2.

Case 1. Pick Y. If Y is relevant in E3, then Y must constrain the free variables in h in some
way.
If Y is a free variable, then c Y  a1, a contradiction.
If Y constrains a predicate containing a free variable through some recursively joined set of
predicates amongst the pi's, then cY  a1, a contradiction.
If Y constrains a predicate containing a free variable through some recursively joined set of
predicates amongst the rj's and is a1  a2 as assumed above, then cY  a2, a contradiction.
If Y is relevant and appears in both some predicate p and some predicate r then cY  a1, a
contradiction (see Case 4 for the  direction).
Therefore, by contradiction, we conclude that there is no cY  a3, cY  a1  a2.

Case 2. Pick X.
If cX  a1 because it is a free variable in E1, then by definition, cX  a3, a contradiction.
If cX  a1 because it constrains a free variable through predicates pi, then cX  a3, a
contradiction.
If c/X  a1 and appears in both in q's and p's, then cX  a3, a contradiction.
Now we need to be careful. Remember that a2 is selected from attributing a1g. It is
possible for a1g   as in the case of Cartesian Product. attr a1g, E2, d' is non-empty
only when there is a relevant variable in q.
If cX  a2 because it is free in E2 and free in E1, then we know cX  a3, a contradiction.
If cX  a2 because it is free in E2 and bound and relevant in E1, then we know cX  a3, a
contradiction.
If cX  a2 because it is bound in E2, occurs among the predicates rj and constraints a free
variable in E2 that is relevant in E1 (through predicate q in E1), then we know cX  a3, a
contradiction. 

Therefore, we conclude that attribution composition computes the attribution of a composed
expression. 

It is important to note the subtlety required in composing relevant attribution. Our definition
of relevance depends upon drawing a distinction between constraints on attribute domains and

 59

explicit query syntax. We saw some challenges for managing relevant attribution in Example
3.9 of Section 3. Consider, more generally, two equivalent queries where selections are
pushed down in one case but not in the other.

Example 4.15 Composing relevant attribution
 E10 = A | pABCDEF ∧ sFGH
 E11 = A | qABC ∧ rDEF ∧ sFGH
 where pABCDEF  qABC ∧ rDEF

Syntactically, we observe that F is relevant to A in E10 but not in E11. Yet, the equivalence of
E10 and E11 confirms that F indeed does not constrain values of A in the result.19 

Theorem 4.2 confirms our intuitions about how attribution should work in the context of
composed queries. It indicates that, at least for conjunctive queries, we can recursively drill
down through progressive layers of indirection. More generally, Theorem 4.1 and Theorem
4.2 together allow us to conclude that, though there are many different ways to construct a CQ
expression, comprehensive, source, and relevant attributions for equivalent CQ expressions
are equivalent.

4.3.6 Multiple derivations within a single expression

We saw in Section 4.3.3 how different substitutions might correspond to the same values
within a single expression. Both multiple occurrences of a single variable and multiple
substitutions proving the same result are modeled in a straightforward manner.

Multiple occurrences of a variable between expressions, as in the concept of relevant
variables, are consistent with the semantics of algebraic natural join. That a single variable
appears as a join attribute suggests that it derives from two or more distinct relations in a
single expression. See Example 4.11. We will say more about what it means to derive from a
relation rather than from a substitution in our discussion of granularity to follow.

In addition to identifying duplicate values through multiple occurrences of a single variable in
an expression, non-key values can repeat in different facts of a single predicate corresponding
to different tuples of a single relation as in Example 4.12.

Rather than being problematic, however, we believe that this highlights a benefit of using
substitutions to define attribution. Duplicate values suggest an opportunity for users to
explicitly identify either a specific instance of a value or all such instances. In the relational
data model we know that we can identify specific instances through functional dependencies.
That our attribution model draws a distinction between specific instances of a value and all
such instances introduces the concept of granularity.

19 Note that we are essentially saying that composition holds for relevant attribution because we explicitly define
composition and relevance that way.

60

4.3.7 Granularity – the concept

The intuition behind granularity is that attribution is simply a pointer from query results to
query sources. Granularity addresses the precision with which the pointer identifies data in a
source or in a result. Source granularity allows the user to receive a list of references that
provides greater (or less) detail. Note that a substitution, defined as a list of value-
substitutions and the formula to which the substitutions are applied, implicitly associates
values with one or more relations. As a consequence, rather than a substitution value, we
might return the tuple(s) containing a value or even the relation name. Source granularity was
first discussed in Examples 3.15 and 3.16 of Section 3. More abstractly, consider:

Example 4.16 Source granularity
E12 = A, E, F | pA, B, C  qC, D, E  rF, G, H

where the source of interest is represented by predicate pA, B, C
if a is a substitution list for the formula of E12 then ap  c1A, c2B, c3C and the substitutions
make predicate p true. We can think of a specific tuple instance as a source for the evaluation
of E12, c1, c2, c3. At the opposite extreme, we might roll-up all such tuple references by
identifying the relation for predicate p as a source. The two poles define a continuum where,
using the notation loosely, we can specify some tighter bound on tuples from the base relation
that are used to evaluate the result. Consider, for example, c1,_,_  as the set of all tuples in
the relation for predicate a subset of tuples in the relation for predicate p where the value of
the first attribute is c1. 

Similarly, result granularity allows the user to ask attribution questions to varying degrees of
specificity. Initially, we assumed that attribution applied to a query result as a whole.
Implicitly, however, we accepted the notion that users might have an interest in only one
portion of the result. Indeed our algorithm for attribution composition exploits the fact that
we can attribute parts of relations. Rather than asking for the attribution of a relation defined
by an expression, we may wish to know the attribution for a specific tuple, column, or value.
Example 3.17 of Section 3 offered a first example of result granularity.

Example 4.17 Result granularity
Consider

E13 = A, B, E | pA, B, C  qC, D, E

Again using the notation loosely, we might demonstrate an interest only in tuples where the
value for variable B is c2 (denoted _, c2B,_). For example, all students in a student database
who have the last name "Smith." At the extreme, we might wish to attribute only a single,
specific tuple (c1A, c2B, c3C. 

We can therefore think of a query result as a relation and the attribution of that result as the
corresponding input relations. However, being able to specify different granularities is useful
because it enables precision while at the same time introducing possible efficiencies. When
we attribute a relation, we do not necessarily know which substitutions correspond to specific
values in the relation. Intuitively, every value is the result of distinct substitutions. If such

 61

exactitude is not necessary, however, as in the case of the list of references at the end of a
text, attributing a group of values to a single list of relation names reduces the amount of
necessary attribution metadata.

4.3.8 Source granularity

In source granularity, we vary the precision with which we identify the formula and the one or
more corresponding variable substitutions that together define an attribution substitution. We
hinted at source granularity when we discussed multiple derivations within a single
expression. In particular, a single substitution may occur in multiple predicates. Multiple
facts (with the same non-key attribute values) may correspond to a single value substitution.

Our definitions for different types of attribution correspond implicitly to different source
granularities. Comprehensive attribution gives the complete list of substitutions for defining
one true interpretation of a CQ expression. Source attribution identifies explicit tuples but
only in relations from which free variables are drawn. Relevant attribution defines sets of
tuples for selected predicates in the expression.

Example 4.18 Source granules and attribution substitutions
Consider again DRC 2.1 from Section 3.

DRC2.1 {HNAME | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧
hotels(HNAME, ROOMS, PRICE)}

The comprehensive attribution for the expression is the set of pairs:

{<f("Imperial"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "single"/ROOMS,
34000/PRICE)>;

<f("Imperial"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "double"/ROOMS,
39000/PRICE) >;

<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "single"/ROOMS,
10000/PRICE) >;

<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "double"/ROOMS,
80000/PRICE) >}

As illustrated above, projecting a substitution list onto a relational predicate in f returns a
tuple that appears in the corresponding relation.

By contrast, consider the relevant attribution:

{<f("Imperial"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME)>;
<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME) >}

Projecting one of the substitution lists onto the predicate hotels returns only the substitution
"Imperial"/HNAME which we can apply as:
 hotels "Imperial"/HNAME, PRICE, ROOMS) and corresponds to two tuples:
("Imperial", "single", 34000) and ("Imperial, "double", 39000) 

62

Example 4.18 suggests the ambiguity that can occur in attribution where multiple instances of
a value in a source may contribute to a single answer. The ambiguity also offers flexibility,
however. Individual variable substitutions indicate all occurrences of one or more variables
in an expression whereas attributing with source tuples directs the attribution to identify
explicit instances. Note that our use of tuple-level source granularity is a proxy for
identifying unique instances. Leveraging functional dependencies may provide additional
value here. Buneman et al. also hints at the potential of using functional dependencies in
attribution and addresses the issue of unique instances for their more general deterministic
semistructured data model (Buneman 01).

We note that an arbitrary granule defines a subset of values in a source (or result) relation.
Specifying an arbitrary source granule does not imply that all valid substitutions for the
expression are contained within the granule. Likewise, not every substitution within a coarse
granule of a CQ expression may give a true interpretation for the expression.

Example 4.19 Interpreting source granules in attribution
Consider a variant on DRC 2.1 from Section 3 where we ask for "single" rooms by the
"Imperial Palace."

DRC2.1' {HNAME | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧
hotels(HNAME, "single", PRICE)}

The comprehensive substitutions are now:

{<f("Imperial"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "single"/ROOMS,
34000/PRICE)>;

<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "Imperial Palace"/SNAME, "single"/ROOMS,
10000/PRICE) >}

The corresponding source attribution is:

{<f("Imperial"/HNAME, "Hibiya"/REGION, "single"/ROOMS, 34000/PRICE)>;
<f("Dai-Ichi"/HNAME, "Hibiya"/REGION, "single"/ROOMS, 10000/PRICE) >}

For coarse grained source attribution, we might identify a granule using only the source
substitutions:

{<f("Imperial"/HNAME)>;
 <f("Dai-Ichi"/HNAME) >}

Applied to the predicate hotels, we know that the substitution "Imperial"/HNAME corresponds to
two tuples:
("Imperial", "single", 34000) and ("Imperial, "double", 39000)

However, the second of the two tuples does not produce a valid interpretation of the original
query expression.

 63

Definition 4.13 Source granularity
A source granule on a relation, denoted by predicate p in a CQ expression E, is defined by a
CQ expression on predicate p (i.e., it is a view). 

Observation 4.1 Defining a source granule in terms of substitutions
Although an arbitrary source granule need not include all valid tuples for evaluating the truth
of an expression, suppose that we have an expression E with attribution A. If we define our
source granules using the substitution a  A, we are assured that the source granules will
always contain at least those tuples necessary to evaluate the query and produce the result
corresponding to the attribution. 

Example 4.20 Defining a source granule in terms of substitutions
Suppose that we had the attribution A for a query expression E with formula f. f includes the
relational predicate p such that for some substitution list a  A, ap  c1, …, cn and ci/Xi
where Xi is a domain variable in p. We can then define a source granule for p as a query
expression Y1, … ,Ym| pY1,…, Ym where we substitute ci/Yj as appropriate (e.g. where Xi =
Yj). The source granule therefore describes p', a tighter bound on p that still is guaranteed to
contain at least those tuples that satisfy the original expression E. 

Tuple-level granularity constitutes a value/variable substitution for every argument in a
relational predicate and describes a specific instance of a source relation. As noted above,
although we define attribution in terms of substitutions, comprehensive and source attribution
provide tuple-level granularity. Assuming no functional dependencies, assigning a value to
each domain variable in a relation uniquely identifies an instance of the relation. Substitution-
level granularity, such as is used in our definition of relevant attribution, implicitly includes
every tuple from each constituent base relation that includes a particular attribute-
value/domain variable substitution. At the extreme, we can speak of a relation-level source
granule as simply a relation name. At the extreme, rather than attributing with specific
substitutions, we can simply provide relation names as a proxy for all tuples in the
corresponding relation.

In general, tuple-level substitutions are the finest grained (most specific), and relation-level
granules are the most coarse, across all attribution types. This says that, where identifying
specific values or instances of values is unimportant, we can always attribute with more
general relations. For purposes of intellectual property or remuneration, for example,
knowing the relation names may be sufficient. Likewise, for data quality purposes, knowing
the relation may be enough to convey information about reputability. By contrast, verifying
or correcting anomalous values may require finer granularity.

If we limit granules to those defined by substitutions, then we may make the following two
observations about the relationship between different levels of source granularity

64

Observation 4.2 Generalizing from fine- to coarse-grained source granules
Given a set of source [comprehensive | source | relevant] substitutions that constitute a
particular degree of specificity, we may always compose a query over the source granules that
will contain at least the original substitutions. At the limit, we can always define a source
granule that contains the original substitutions as the original base relation(s). 

Observation 4.3 Specializing from coarse- to fine-grained source granules
Assuming a set of [comprehensive | source | relevant] substitutions that constitute a particular
degree of specificity, we may always re-attribute the same query expression and query result
and return source granules that contain no more than the original set of substitutions. At the
limit, we know that the tightest bound is the set of exactly those comprehensive, source, or
relevant tuples that evaluate the expression to true. 

Because we define granularity as a composed query on a source predicate p, we may also
make the following observations about the implications of varying source granularity on other
properties of attribution.

Observation 4.4 Attribution composition is preserved
We define source granules in terms of composed queries on the base sources. Source
granules therefore implicitly constitute IDB. At the extremes, either a source granule contains
exactly those tuples that evaluate the expression to true or it is the identity on the EDB (i.e.
relation-level source granularity). We already know that we can compose tuple-level
substitutions. At the opposite extreme, if we attribute with a source relation name rather than
a set of source substitutions, we know that we can unfold by composing the relation names of
the relations used to construct an IDB. 

Observation 4.5 Attribution of strictly equivalent queries is preserved
For relevant attribution, this is again, trivial. There is a unique minimal equivalent; regardless
of the source granularity used, the relevant attribution is identical. For comprehensive and
source attribution, we may again rely upon the containment map between equivalent
expressions. Because the variables map to one another in the same predicates, we are assured
that a source granule in one expression, defined as a query composed on a predicate,
prescribes the same subset of base relation tuples in the equivalent expression. 

4.3.9 Result granularity

Result granularity stems from two observations. First, from the beginning, we intuited that
users may have some interest in greater precision than simply attributing the result of a query.
One tuple or even one value may raise particular interest. We refer explicitly to result
granularity in our definition of composition. To compose an attribution recursively, we
attribute substitutions in a predicate, not the entire relation represented by the predicate.

 65

A second observation motivating result granularity stems from relational closure and the fact
that relational query answers can serve as inputs to subsequent queries. As a consequence,
source granularity issues like "all occurrences of a value" or "the specific instance of a value"
may apply equally to results as well as to sources.

Example 4.21 Result granularity
Consider a variant on DRC 2.1 from Section 3.

DRC2.3 {HNAME, PRICE | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧
hotels(HNAME, ROOMS, PRICE)}

We know that the result set includes the "Imperial, 34000" the "Dai-Ichi, 80000" and the
"Dai-Ichi, 10000". A user might only have an interest in the "Dai-Ichi" hotel rather than the
"Imperial". A different user might only be interested in the attribution for values of PRICE.


The concept of result granules is consistent with our definitions of attribution, which refer to
the substitutions that make the expression for the result true. As with source granules, we can
imagine attributing the specific instance of a value in the result rather than all instances of a
value. In Section 3 we saw how the projection of a non-key attribute from a base relation can
result in multiple sources for the same value.

Mindful that an IDB is simply the result of a query20, we follow our definition of source
granules in defining result granules.

Definition 4.14 Result granularity
A granule of result r, defined by CQ expression E evaluated on database d is a result r'
defined by a CQ expression E' composed on E for database d.21 

Observation 4.6 Attribution of a result tuple
It follows from our definition of a result granule that the attribution of a specific tuple t in a
result r, assuming no knowledge of functional dependencies, is then simply the attribution of
composing a query on the result r for the specific tuple of interest.

Moreover, because we define result granules using query composition, we are assured of

20 The closure property of relational theory dictates that a query result (output) may in turn serve as a source
(input) to some other expression (Maier 1983; Ullman 1988)
21 As we enrich our query language, we will eventually define a source or result granule by composing any
positive query on a source or result relation, respectively.

66

Observation 4.7 Attribution of strictly equivalent queries is preserved.
We already know that the comprehensive and source attribution of strictly equivalent queries
is equivalent. Because this equivalence is preserved over composition, we conclude that the
attribution of an arbitrary result granule is equivalent given equivalent CQ expressions. 

To define the relationship between result granules and source granules we offer the following
observations.

Observation 4.8 Attribution of a result tuple
For relation-level source granules, the attribution of one tuple in the result of a CQ expression
is the same as any other tuple in the same result. This merely conforms to the intuition that in
a CQ expression, every conjunct applies equally to every tuple. 

Observation 4.9 Comprehensive attribution of result values
For comprehensive attribution, we may make the following stronger claims. First, regardless
of source granularity, we observe that the comprehensive attribution for one value in a result
tuple is the same as that for every other value in the same tuple. Second, if we limit ourselves
relation-level source granules, the comprehensive attribution for a value in the result is the
same as that for every other value in the result. 

The relationships between different granules has particular relevance for practical
implementation, because it promises significant reductions in the amount of attribution
metadata necessary to satisfy different user objectives.

4.4 Adding theta comparisons
We now move to refine our theory by extending the richness of the query language. The
introduction of theta comparisons challenges some of our earlier conclusions about attribution
when limited to CQ expressions. However, we verify that, for strictly equivalent queries, the
comprehensive and source attribution of equivalent queries remains equivalent. Moreover,
we conclude that for all types of attribution, attribution composition continues to hold.

4.4.1 Attribution concept

The first language extension introduces arithmetic comparisons in atoms of the form (XY),
(Xc), or (cX) where c is a constant and X and Y are either free or bound variables that are
limited in the manner defined for the DRC above. We refer to our extended queries as CQT
expressions (or CQ expressions with theta comparisons). The set of  operators are , , ,
, and . For current purposes, we exclude explicit equality from the set of comparisons;
explicit equality is incorporated into the language independently.22

22 Recall that conjunctive queries already included a "safe" or limited version of equality-comparisons. See note
and text at 9.

 67

Example 4.22 θ-comparison
First, consider a variant on query Q2 of Section 3.

E14  {HNAME, PRICE | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) ∧
hotels(HNAME, "single", PRICE) ∧ PRICE  15000}

Second, we present a more abstract case.

E15  {W | p(V,W,X)  q(X,Y,Z) ∧ V > 10} 

Extending our definitions of attribution from CQ-expressions, we see that the introduction of
comparisons does not introduce new relational predicates but may introduce new variables or
perhaps constants for comparison. To better understand the implications of these changes for
our theory, we revisit our analysis for conjunctive queries beginning with types of attribution.

4.4.2 Types of attribution

We initially defined comprehensive attribution as a set of substitution lists for all variables in
the expression applied to the formula for the expression itself such that the interpretation of
the formula is true. The definition for comprehensive attribution remains unchanged.

While θ-comparisons may introduce new variables into the expressions, under the limitations
of safety, every variable is still limited in the sense that it must appear in a (non-negated)
relational predicate. Consistent with Definition 4.9 on source attribution and Definition 4.13
on source granularity, non-predicate atoms are not considered sources. For E14 above, the
arithmetic comparison is not considered a source for PRICE.

Likewise, Definition 4.10 for relevant attribution remains unchanged. The introduction of
comparisons, however, does provide new alternatives for constraining the domain of a free
variable. In E15, V is relevant to W.

4.4.3 Multiple derivations from different expressions, strict equivalence

The same two categories for multiple derivations that we identified in CQ expressions apply
when theta-comparisons are added. Multiple derivations may stem from equivalent
expressions or from multiple occurrences within a single expression. For equivalent
expressions on the same database, we now need to consider containment not only between
predicates of equivalent expressions but between non-predicate atoms as well.

Example 4.23 Multiple derivations
E16  XY | pXYZ ∧ qUVW ∧ X ≠ U ∧ X  U
E17  XY | pXYZ ∧ qUVW ∧ X  U 

The problem is tied to the introduction of new atoms in the form of theta comparison. The
relationship between arithmetic comparisons of equivalent queries is not always clear as
indicated in the following example from Ullman (1989).

68

Example 4.24 Interactions between arithmetic comparisons and relational predicates

E18  XY | pXYZ ∧ qUV ∧ U  V
E19  XY | pXYZ ∧ qUV ∧ qVU 

Fortunately, we do know that a containment mapping does hold between the relational
predicates in equivalent CQT expressions (Ullman 1989). Furthermore, the property of safety
guarantees that all domain variables are captured in the containment mapping.

Theorem 4.3 Attribution equivalence
If E1 and E2 are equivalent CQT expressions, then their [comprehensive | source] attributions,
A1 and A2, are equivalent.

Lemma 4.7 Comprehensive attributions of equivalent CQT expressions are equivalent.

This is trivially true by the definition of equivalence between E1 and E2. We know that there
is a containment map between all predicates representing relations of equivalent CQT
expressions. Moreover, because of safety, we know that the built-in predicates use only
variables that are bound in (and hence captured by the containment mapping between)
relational atoms.

Lemma 4.8 Source attributions of equivalent CQT expressions are equivalent.

Recall that source attribution is defined in terms of the free variables of a CQT expression.
Because the queries are equivalent, we know that the two expressions define the same
relation. Therefore, the containment mapping between relational predicates of equivalent
expressions must take relational predicates containing free variables in E1 to the
corresponding relational predicates in E2 and vice versa.

From Lemmas 4.7 and 4.8, we conclude that the comprehensive and source attributions of
equivalent queries is equivalent. 

4.4.4 Multiple derivations from different expressions, composition

Composition, our reference for equivalent expressions defined on different databases, does
not apply to non-predicate atoms, because theta-comparisons are not defined by expressions.
We will, however, want to consider, the effect of non-predicate atoms on our definition for
the attribution of composed expressions and whether the theorem for the recursive
composition of attribution holds over theta-comparisons.

Again, we rely upon the fact that, though there is no unique, minimal query, there remains a
containment mapping between the predicates in equivalent CQtheta queries.

What is the definition of a composed query (e.g. you can substitute expressions with the theta
operator in it) and algorithm … do you need to adjust either the drill down or the way you
reconstruct the attribution as you back out?

 69

Consequently, the introduction of inequality comparisons does not change the ability to
compute attribution in a recursive fashion for predicates composed on other predicates.

Theorem 4.4 Composition holds for CQT expressions
Attribution composition computes the attribution of a composed CQT expression.

Assume without loss of generality the following CQT expressions E1, E2, E3 defined by the
formulas f, g, and h respectively s.t.
E1  f  p1  p2  …  pn  q where q is the only IDB in E1
E2  q  g   r1  r2  …  rm where ri  d
E3  h   p1  p2  …  pn  r1  r2  …  rm
Again, we assume that variables in formula g of E2 are renamed and reordered appropriately.
The p's and r's may now include theta comparisons in addition to relational predicates with
constants. We further assume, for convenience, that obvious redundancies are reduced (e.g.
X  10 ∧ X  5 reduces to simply X  5)

Given E1 defined on d' d  q and r, the result of evaluating E1 on d', attribution
composition computes the [comprehensive | source | relevant] attribution of result r in terms
of d as defined by attrr, E3, d.

Lemma 4.9 a3,h  A3 is a comprehensive attribution for E3 if and only if a3,h 
Compose A1,f.

This case is no different than for CQ expressions. That variables may now also appear in
arithmetic comparisons does not affect their substitutions which are bound by the relational
predicates.

Lemma 4.10 a3,h  A3 is a source attribution for E3 if and only if a3,h  Compose
A1,f.

A1 is the source attribution for E1. Again, this follows the parallel for CQ expressions.
Source attribution is defined by the relational predicates in which the free variables appear.

Lemma 4.11 a3,h  A3 is a relevant attribution for E3 if and only if a3,h  Compose
A1,f.

A1 is a relevant attribution for E1. As with CQ expressions, we need to verify that
relevantE3  relevantE1  relevantE2' where relevantE2'  relevantE2 and
relevantE refers to the relevant variables in E and likewise for freeE; boundE. In other
words, we want to verify that the relevant variables in E3 are made up of the relevant variables

70

in E1 and the relevant variables in E2. Because E3 is the unification of E1 and E2, however, we
avoid the problem observed in strict equivalence of identifying interactions between relational
predicates and arithmetic comparisons. We form relevantE2' as we formed A2' previously.
We attribute only the relevant variables in q on the expression E2.

We note that arithmetic comparisons may now constrain relational predicates containing free
variables or relational predicates joined to predicates containing free variables. In addition,
arithmetic comparisons may join relational predicates. However, comparisons in the rj's of E3
appear in E2 and comparisons in the pi's of E3 appear in E1. Furthermore, a comparison in the
rj's cannot include variables from the pi's and vice versa, unless those variables appear in the
IDB q of E1. With these observations in mind, we proceed as in the case for CQ expressions.

Case→
Pick some relevant attribution a3,h  A3 and split it: Project a3 onto f and g.
We need to establish that a3f  a1,f  A1 and a3g  a2,g  A2'  A2 where A2' as the
attribution for the tuple defined by a1  a2, a tuple in q.

A substitution cX is in a substitution list for a3 because either X is free in E3 or c/X joins two
relational predicates, at least one of which is recursively joined to a relational predicate
containing a free variable or is a constant from the original query expression that appears in a
relational predicate recursively joined to a predicate containing a free variable of E3.

Case 1. X  relevantE3 and X  freeE3. FreeE3  X  freeE1  relevantE1 by
definition of the equivalence of E1 and E3. For X  freeE3  Y  freeE2, Y must also be
free in E1 because E2 is q in E1 (e.g. Y  freeE2  Y  freeE1). Consequently, at least for
the relevant variables in E2 that are free, we know a2  A2'  A2

Case 2. X  relevantE3 joins relational predicates to a recursively joined set of relational
predicates or X constrains one predicate in a recursively joined set of relational predicates
(e.g. X is a constant in the formula or in an arithmetic comparison). All such predicates are in
the set pi and at least one joined predicate contains a free variable in h. Then X is relevant in
E1 so a3f  a1 for a1,f  A1.

Case 3. X  relevantE3 is like Case 2 except all such predicates are in the set rj. Then X is
relevant in E2 so a3g  a2,g  A2'  A2 where A2' as the attribution for the tuple defined by
a1  a2, a tuple in q. (recall that g  q in E1).

Case 4. X  relevantE3 appears in both some predicate pi and some predicate rj. Then X
must appear in predicate q of E1 (X is not free in E1 so it must be bound in E1 and appear in q
in order to appear in both pi and rj in E3). Therefore X is relevant in E1 so a3f  a1 for a1,f
 A1.

 71

It is possible that a3g is empty, which occurs when we consider a Cartesian Product and
then do not restrict variables between arguments to the Cartesian Product. In this case,
attribution relevance is trivially true in the pi's.

From here, we do the same unfolding as before and conclude that Compose returns a1  a2h
which is a3.

Case 
Pick some random substitution list a1  a2 as before and verify that a1  a2,h  A3.
Proof by contradiction.
Suppose not. Then there must be a substitution cX  a1  a2, cX  a3, or cY  a3, cY  a1 
a2.

Case 1. Pick Y. If Y is relevant in E3, then Y must constrain the free variables in h in some
way.
If Y is a free variable, then c Y  a1, a contradiction.
If Y constrains a predicate containing a free variable through some recursively joined set of
predicates amongst the pi's, then cY  a1, a contradiction.
If Y constrains a predicate containing a free variable through some recursively joined set of
predicates amongst the rj's and is a1  a2 as assumed above, then cY  a2, a contradiction.
If Y is relevant and appears in both some predicate p and some predicate r then cY  a1, a
contradiction (see Case 4 for the  direction).
Therefore, by contradiction, we conclude that there is no cY  a3, cY  a1  a2.

Case 2. Pick X.
If cX  a1 because it is a free variable in E1, then by definition, cX  a3, a contradiction.
If cX  a1 because it constrains a free variable through predicates pi, then cX  a3, a
contradiction.
If c/X  a1 and appears in both in q's and p's, then cX  a3, a contradiction.
Now we need to be careful. Remember that a2 is selected from attributing a1g. It is
possible for a1g   as in the case of Cartesian Product. attr a1g, E2, d' is non-empty
only when there is a relevant variable in q.
If cX  a2 because it is free in E2 and free in E1, then we know cX  a3, a contradiction.
If cX  a2 because it is free in E2 and bound and relevant in E1, then we know cX  a3, a
contradiction.
If cX  a2 because it is bound in E2, occurs among the predicates rj and constraints a free
variable in E2 that is relevant in E1 (through predicate q in E1), then we know cX  a3, a
contradiction. 

Therefore, we conclude that attribution composition computes the attribution of a composed
CQT expression. 

72

4.5 Adding explicit equality
Adding explicit equality to CQT expressions challenges our intuitions about the attribution of
equivalent queries, but not necessarily in unexpected ways. The source of a variable is
determined syntactically by occurrences of that variable in the expression. Logically, we say
that the source of a variable is the predicate by which we limit (for purposes of safety) the
values of a particular domain. Example 3.12 in Section 3 contrasted natural joins and explicit
equality. We present a more abstract example here.

Example 4.25 Explicit equality
 E20  XY | pXYZ ∧ qUVW X = U
 E21  XY | pXYZ ∧ qXVW
 E22  XZ | pUWWX ∧ X  U

In E21, both predicates p and q may be said to limit values of X for purposes of safety. In E20,
predicate q does limit values of X, but only indirectly through an explicit comparison to U. In
E22, note that all variables are limited in the same predicate. More particularly, from the
perspective of equivalence the examples introduce a slight irregularity into the containment
map. We either implicitly push all equalities into the predicates (for example, eliminating
variable U as in E21) or rename all variables so that no variable name appears more than once
as in E20; all equalities are than explicit. Without the change, the containment map takes X and
U in E20 to X in E21. Mapping from E21 to E20, however is less clear. To what variable in E20 do
we map E21 

Rather than resolving the problem of explicit equality by either pushing equalities into
relational predicates or renaming all variables, we suggest that the syntactic difference may
prove useful for purposes of attribution. Under this interpretation, different relations that
include the same domain may use the same domain variable to indicate multiple sources for
that domain. In this way, we use the introduction of explicit equality to help differentiate
attribution.

Example 4.26 Source attribution and explicit equality
 E23  {HNAME | regions(HNAME, REGION) ∧ sites("Imperial Palace", REGION) }

E24  HNAME | hostels(HNAME, PRICE, STATION) ∧ sites("Nakamise Dorsi", REGION) ∧
REGION  STATION}

E23, adapted from Q2 in Section 3, attempts to locate hotels by the "Imperial Palace". It does so
by matching the REGION in which the Imperial Palace is located, to the REGION in which
individual hotels are located. Here, the two relations draw from the same domain so both
relational predicates are considered sources for values of REGION.

E24, adapted from Q5 in Section 3, attempts to locate hostels by "Nakamise Dorsi". However,
the relation for hostels does not know about the domain of REGIONs. Rather, the query uses
the knowledge that many train stations are named for the region in which they reside. As a
consequence, we find hostels by equating values from the REGION domain with values from
the STATION domain. 

 73

Associating attribution with the syntax of a calculus expression allows us to distinguish
between the concept of the natural join and the theta join (Ullman 1988). For purposes of
attribution, in the natural join, two relations implicitly serve as sources for the same attribute
domain. In theta-join, two attribute values, possibly from dissimilar domains, are explicitly
compared.

Using the syntax of explicit equality to distinguish between different sources, however,
clearly compromises the equivalence of comprehensive, source, and relevant attributions of
strictly equivalent queries. We therefore offer

Observation 4.10 Attribution of strictly equivalent CQT+ expressions
Though E1 and E2 are equivalent CQT+ expressions (CQT expressions with explicit equality),
then their [comprehensive | source | relevant] attributions, A1 and A2, are not necessarily
equivalent. To see this, we need only recognize that the source attributions of equivalent
expressions no longer necessarily map to one another as in E23 and E24 above. Comprehensive
and relevant attribution suffer from the same issue. Although predicates map, there is not
necessarily a consistent way of mapping domain variables between equivalent expressions. 

4.6 Adding union
In this next extension, we consider the addition of union into the query language. Unlike
earlier extensions, union allows us to introduce and eliminate predicates from equivalent
expressions. As a result, we first redefine our concept of attribution to account for union. We
conclude that for the different types of attribution, the attribution of strictly equivalent queries
are no longer necessarily equivalent. With some minor adjustments to the algorithm,
however, we can show that attribution does continue to compose.

4.6.1 Attribution concept

Much as with the introduction of θ-comparison, the DRC imposes safety constraints on our
introduction of disjunction in the language to support the semantics of algebraic union. In
particular, the disjunction of two predicates must have the same set of arguments much as the
algebraic condition on union requires union compatibility (Ullman 1988). As a further
simplification for defining attribution in the presence of union, we assume prenex, disjunctive
normal form (DNF) as the canonical form for all CQTU expressions. We know that we can
transform a safe calculus expression into this form. A CQTU query therefore has the form:

 {X1,…,Xn | f1(X1,…,Xn) ∨…∨ fm(X1,… Xn)}

Every disjunct fj is a CQT query that alone may make the expression true. In light of
disjunction, we therefore generalize our original intuition for attribution. Attribute each
disjunct as an independent CQT+ query.

74

Definition 4.15 Attribution of the union of CQT+ expressions
The [comprehensive | source | relevant] attribution of the disjunction of CQT+ expressions is
the union of the corresponding attributions for each constituent disjunct. 

Example 4.27 Attribution of the union of CQT+ expressions
 E25 = A | pABC  qABC
The [comprehensive | source | relevant] attribution for the expression is therefore the
attribution of A | pABC combined with the attribution of A | qABC 

We actually saw several examples of unions from the examples in Section 3 beginning with
Example 3.6. In the case of the union of CQ expressions, we know that there is a unique
minimal equivalent (Ullman 1989). We find the unique minimal equivalent by minimizing
each disjunct independently and then removing disjuncts that are contained by other disjuncts
in the same expression. Under these limited circumstances, then, we can certainly argue that,
for the unique minimal expression, the comprehensive, source, and relevant attributions are
the same. For the general case of attribution equivalence of strictly equivalent queries,
however, attribution equivalence breaks down with the introduction of union.

4.6.2 Multiple derivations – strict equivalence

For attribution, which is based upon substitutions, the problem posed by the introduction of
union is immediately clear. Disjunction allows the introduction of new predicates, hence new
variables and new substitutions. The containment condition for equivalent queries and the
attendant mapping between attributions for equivalent expressions therefore breaks down.
Example 3.7 of Section 3 offered one example of how attribution breaks down under union.
Here, we consider a more abstract case. Consider the following equivalent expressions.

Example 4.28 Attribution of strictly equivalent expressions with disjunction
 E26  A | pABC  pABC ∧ qABC
 E27  {A | pABC  pABC ∧ C  10
 E28  A | pABC

The three queries are equivalent because the second disjunct in E26 and E27 is contained by the
first disjunct. E26 and E27 therefore reduce to E26. However, the comprehensive attribution for
the first expression includes substitutions in the predicate q which do not map to the other
equivalent expressions. Perhaps more obvious, we may regard q as a source for the attribute
values of A in E26 although neither of the equivalent expressions reference q. For relevant
attribution, we see that a variable, relevant in one disjunct, can prove irrelevant in a disjunct
of the same expression or to an equivalent expression. In E27, the attribute variable C is
relevant in the second disjunct but neither in the first disjunct of the same expression nor in
the third expression. 

That attribution breaks down under union corresponds to our intuitions about attribution.
Attribution can provide corroborating information about the quality of a particular query
result or the values in a particular result. Though redundant, attribution may also provide

 75

references to non-redundant ancillary information. Finally, from an intellectual property
perspective, whether a source proves redundant or not, proper acknowledgement and perhaps
remuneration is only appropriate.

4.6.3 Multiple derivations - composition

While attribution equivalence breaks down for strictly equivalent queries, we see that
attribution continues to compose. As observed earlier for the relevant attribution of CQT
expressions, composition assumes that we begin with a single formula and unfold the IDB.
Composition does not reduce redundant disjuncts. We reason that we may unfold redundant
disjuncts as easily as any other disjunct in the disjunction of CQT+ expressions (assuming also
the appropriate renaming and reordering to avoid conflict in multiple occurrences of the same
predicate or domain variable in the same disjunct).

We first update our algorithm to account for disjunctions. Then, we prove that the algorithm
holds for the introduction of safe disjunction assuming that queries are expressed in canonical
form.

To update the algorithm, we must first recall that the attribution of the expression is now the
union of the attributions of each disjunct. We assume that the definition of any IDB may also
include disjunction but that all IDB definitions are expressed in canonical form as well (i.e.
the disjunction of conjuncts). The accumulation of disjuncts must therefore distribute in the
original expression.

Example 4.29 Attribution of a composed expression with nested disjunction
 E29  A | pABD  qACE
 E30  qACE  {ACE | rABC  sCDE  tACE
 E31

  A | pABD  rABC  sCDE  tACE
E21 is an expression with an IDB in the second disjunct. The IDB, which we label E30, itself
contains a disjunction. Unifying the IDB gives E31. Note the necessary variable renaming.
Attribution is defined in terms of the base relations. As before, we want to discover whether
we may iteratively attribute E29 and E30 in lieu of unifying the expression a priori.

Algorithm 4.2 Attribution composition for CQT+U expressions

Compose (A, s) where A is the attribution for s, a disjunction of CQT+ sub-formulas, each of
which may itself be a disjunction of CQT+ sub-formulas.

Compose (A, s)  (a)
if s  ∅ then return   (b)
else pick fi a disjunct in s  f1  f2  … fx (c)
 s  f1  f2 … fi-1  fi+1  …  fx (d)
 A'  a,f | a,f  A and f = fi (e)

76

 Compose (A, s)  ComposeD A',fI (f)

ComposeD A, f  (1)
if f has no q's then return A (2)
else pick qi, an IDB in f (3)
 f  p1  p2  …  qi-1  qi+1…qm (4)
 ComposeD Unfold A, qi, f  (5)

Unfold A, q  (6)
if A is ∅ then return   (7)
else pick a,f  A (8)
 let g be the formula for IDB E representing q (9)
 let u be the unifier for h  unifyf,g (10)
 let E' be E as defined by g with the renaming of u (11)
 B = attr E' aq/x , d' (12)
 Rewrite B, ua  aq, h  Unfold A  a,f, q  (13)

Rewrite B, a, h  (14)
if B is ∅ then return   (15)
else pick b,g  B (16)
 a  b,h  Rewrite B  b,g, a, h (17) 

This is the same algorithm as that presented for CQ expressions with the exception being lines
(a) – (f). What was formerly called "Compose" we renamed "Compose Disjunct" or
"ComposeD." As declared in line (a), "Compose" is now a function that recurses down the
disjuncts in the formula for the query expression. We call "ComposeD" on each disjunct as if
it were an isolated CQT+ query. The attribution of the expression is then the union of the
attributions from calling "ComposeD" on each disjunct. Because each substituion is defined
for only one disjunct in the query expression, line (e) ensures that we ComposeD on each
disjunct with only those substitutions applicable to a respective disjunct. We then propose:

Theorem 4.5 Attribution composition
Our algorithm for attribution composition computes the attribution for the union of composed
CQT+ expressions. Assume the following CQT+ expressions E1, E2, E3 defined by the
formulas f, g, and h respectively as:

E1  f  p1  p2  …  pn  q  t1  t2  …  where q is the only IDB in E1
E2  q  g  r1  r2  …  rm  s1  s2  …  so where ri, si  d
E3  h  p1  …  pn  r1  …  rm  p1  …  pn  s1  …  so  t1  … 

Furthermore, we know that  r1  r2  …  rm and  s1  s2  …  so are union compatible
with schema defined by the IDB q.

 77

Given E1 defined on d' d  q and r, the result of evaluating E1 on d', attribution
composition computes the [comprehensive | source | relevant] attribution of result r in terms
of d as defined by attrr, E3, d.

Lemma 4.12 a3,hi  A3 is a comprehensive attribution for E3 if and only if a3,hi 
Compose A1,f.

Case 
Pick a random substitution a3,hi  A3. Consider the following possibilities:
 hi  p1  …  pn  r1  …  rm
 hi  p1  …  pn  s1  …  so
 hi  t1  … 

If hi  t1  …  then we know that a3,hi  a1,hi  A1 because hi is a disjunct in the formula
for E1 (see Algorithm 4.2 line (c)). For A' on fi  x1 … xn  hi we know that Ihia3/x  true
so Ifia3/x  true. There are no IDB in fi so a3,hi  ComposeDA1,fi  ComposeA1, f.

If hi  p1  …  pn  r1  …  rm in A3 then we can say that a3p1  …  pn  r1  …  rm,
p1  …  pn  r1  …  rm  a1, p1  …  pn  r1  …  rm  A1 because i,
Ipia3pi/x  true and j, Irja3rj/x  true and q is defined by the formula g. Or, to be
more precise, r1  …  rm is a disjunct of g that makes g true. Similarly, we know that a3r1
… rm, g  a2r1 … rm  A2'  A2 (where A2' is the attribution for tuple a1  a2, a tuple in q.
Compose calls ComposeD on fi  p1 … q with A'  a1, fi in line (f) of Algorithm 4.2.
ComposeD passes A' to Unfold. Unfold calls attra3q, E2, d' which we already know is
A2'  A2. Unfold is applied to every value of A' so certainly it calls itself on a1 which we have
already seen makes E1 true. Unfold calls Rewrite with a1 and A2' so certainly it is applied to
a2. But Rewrite is called on hi, the unification of p1… q and g and returns a1  a2 which is
a3.

If hi  p1  …  pn  s1  …  so then we apply the same analysis as before, knowing that hi
 s1  …  so is a disjunct of g that also makes q true. As a consequence, it produces A2" 
A2 from attra3q, E2, d' and we arrive at the same conclusion as before.

Case 
If unifyf,g results in the disjuncts:
 p1  …  pn  r1  …  rm,
 p1  …  pn  s1  …  so or
 t1  … 
does every a1, t1  …  or (a1  a2, p1  …  pn  r1  …  rm or (a1  a2, p1  …  pn  s1 
…  so appear as a substitution in A3? Pick some arbitrary a1 from a pair in A1. If you picked

78

some a1, t1  …  then we know that a1 makes disjunct t1  …  true. But because t is also a
disjunct of E3, if a1 makes the disjunct true, then certainly it makes E3 true therefore a1, t1 
…   A3.

Now if the pair a1  A1 is for disjunct p1  p2  …  pn  q we want to pick an a2 but not an
arbitrary a2. From Algorithm 4.2, Compose creates A2' from attr a1g, E2, d'. So pick
any a2 from a pair  A2'. We know a1  a2 paired with p1  …  pn  r1  …  rm  p1  …
 pn  s1  …  so appears in A3 if it makes E3 true. i, Ipia3pi/x  true and j, either
Irja3rj/x  true or Isja3sj/x  true. But is either disjunct true at the same time that
the p's are true? Because we know that a2 is from a pair in A2' by construction, we know that
a2 makes E2 true. Therefore, we know that a1  a2, p1  …  pn  r1  …  rm  p1  … 
pn  s1  …  so  A3. 

Lemma 4.13 a3,hi  A3 is a source attribution for E3 if and only if a3,hi  Compose
A1,f where A1 is the source attribution for E1.

Case 
Pick a random substitution a3,hi  A3. Consider the following possibilities:
 hi  p1  …  pn  r1  …  rm
 hi  p1  …  pn  s1  …  so
 hi  t1  … 

Regardless of which alternative is chosen, the source attribution consists of the free variables
(and the accompanying variables in the associated relational predicate(s)).

If hi  t1  …  then we know then we know that a3t1  … , t1  …   A1 because a3
identifies the disjunct t1  …  of E3. But t1  …  is also a disjunct of E1, so this holds
trivially. Note that there is no IDB in t1  …  so Algorithm 4.2 line (2) returns the original
source attribution for the disjunct t1  …  for ComposeA1, t1  … .

If hi  p1  …  pn  r1  …  rm then we observe that a3p1  …  pn  q, p1  …  pn 
q is a pair  A1 because for predicates pi, E1  E3 and for predicate q  E1, q is defined in
terms of the free variables of E2 which is unfolded in a3. Similarly, we can say that a3 r1 
…  rm , q  a2,g  A2'  A2 where A2' is the source attribution of a1  a2, a tuple of q.
Compose passes f'  p1  …  pn  q to ComposeD with source attribution A' defined in
terms of the p's and q's. ComposeD passes A' to Unfold with q  r1  r2  …  rm  s1 
s2  …  so. Unfold is called on every source substitution in A' so certainly it is called on a1.
Unfold calls for attra1g, E2, d' which we know includes the source substitutions A2' 
A2 where the formula in the attribution pair is the disjunct r1  r2  …  rm. Rewrite is
called on every element of A2' so eventually it is called on a2. But Rewrite pairs a1  a2 with

 79

hi a disjunct p1  …  pn  r1  …  rm of unifyf,g in line (10) of Algorithm 4.2. This,
then, is just a3. The same reasoning applies for the disjunct s1  s2  …  so from the
attribution in Unfold.

Case 
If unifyf,g results in the disjuncts:
 p1  …  pn  r1  …  rm,
 p1  …  pn  s1  …  so or
 t1  … 
does every a1, t1  …  or (a1  a2, p1  …  pn  r1  …  rm or (a1  a2, p1  …  pn  s1 
…  so appear as a substitution in A3? For pairs a1, t1  …  then we know that a1 is a
source substitution t1  … . But because t is also a disjunct of E3, if a1 is a valid source
substitution for E1, then certainly it is likewise for E3 therefore a1, t1  …   A3.

For pairs involving an a1  a2 pick some arbitrary a1 from a pair in A1. Now pick an a2 from
A2'  A2 generated by the attra1g, E2, d' in Unfold. This will give a substitution a2 either
in r1  r2  …  rm or s1  s2  …  so. We know that a1  a2 paired with p1  …  pn 
r1  …  rm or p1  …  pn  s1  …  so makes A3 true if it makes E3 true. And we know
a1 makes the p's true just as a2 makes the r's or the s's true by construction. Therefore, we
know (a1  a2, p1  …  pn  r1  …  rm  A3 and (a1  a2, (p1  …  pn  s1  …  so 
A3 

Lemma 4.14 a3,h  A3 is a relevant attribution for E3 if and only if a3,h  Compose
A1,f.
Where A1 is a relevant attribution for E1. As in prior cases, we need to verify that
relevantE3  relevantE1  relevantE2' where relevantE2'  relevantE2 and
relevantE refers to the relevant variables in E and likewise for freeE; boundE. We form
relevantE2' as we formed A2' previously. We attribute only the relevant variables in q on the
expression E2. With disjunction, there is the additional complexity of tracking relevance in
each disjunct.

Case 
Pick a random substitution a3,hi  A3. Consider the following possibilities:
 hi  p1  …  pn  r1  …  rm
 hi  p1  …  pn  s1  …  so
 hi  t1  … 

Suppose hi  t1  … . We also know that t1  …  is a disjunct of E1 which means that a3,
t1  …   A1'  A1. Because there are no IDB in this disjunct, we know that the call to

80

ComposeD on t1  …  with A1'  A for pairs a3, t1  …  simply returns A1'. So we
conclude a3, t1  …   ComposeA1, t1  … .

If hi  p1  …  pn  r1  …  rm then we consider the same cases as for relevance in CQ.
However, we must now consider the cases for each disjunct.

Case 1. X  relevantp1  …  pn  r1  …  rm and X  free p1  …  pn  r1  …  rm .
We know that freep1  …  pn  r1  …  rm  X  freeE1  relevantE1 by definition of
the equivalence of p1  …  pn  q and hi  p1  …  pn  r1  …  rm. Consequently, at
least for relevant variables in the disjunct p1  …  pn  r1  …  rm that are free, we know
a2  A2'  A2.

Case 2. X  relevantp1  …  pn  r1  …  rm joins relational predicates to a recursively
joined set of relational predicates or X constrains one predicate in a recursively joined set of
relational predicates (e.g. X is a constant or X appears multiple times in a single relation). All
such predicates are in the set pi and at least one joined predicate contains a free variable in hi
 p1  …  pn  r1  …  rm. Then X is relevant in E1 so a3f  a1 for a1, p1  …  pn  q
 A1.

Case 3. X  relevantp1  …  pn  r1  …  rm as in Case 3 of Lemma 4.6 where the X's
appear only in the rj's. Then X  relevantr1  …  rm which implies X  relevantE2 so
a3g  a2,g  A2'  A2 where A2' as the attribution for the tuple defined by a1  a2, a tuple
in q. Of course A2' may also include some substitutions from other disjuncts in the definition
of q (e.g. s1  …  so.

Case 4. X  relevantp1  …  pn  r1  …  rm appears in both some predicate pi and some
predicate rj. Then X must appear in predicate q of E1 (X is not free in E1 so it must be bound
in E1 and appear in q in order to appear in both pi and rj in E3). Therefore X is relevant in E1
so a3f  a1 for a1, p1  …  pn  q  A1.

It is possible that a3g is empty, which occurs when we consider a Cartesian Product and
then do not restrict variables between arguments to the Cartesian Product (i.e. no 
comparisons). In this case, attribution relevance is trivially true in the pi's.

From here, we do the same unfolding as before and conclude that Compose returns a1 
a2,p1  …  pn  r1  …  rm  A3. We can do the same analysis for hi  p1  …  pn  s1
 …  so or any other disjunct of q.

Case 
Pick some random substitution from Compose: a1, t1  …  or a1  a2, f' where f' is a
disjunction p1  …  pn  r1  …  rm or p1  …  pn  s1  …  so and verify that it
appears in A3.

 81

Proof by contradiction.
Suppose not. Then there must be a substitution:
 cX  a1 where a1, t1  …   A3 or some
 cX  a1  a2 where a1  a2, p1  …  pn  r1  …  rm   A3 or some
 cX  a1  a2 where a1  a2, p1  …  pn  s1  …  so   A3.

But we know t1  …  is a disjunct in E3 so if a1 is relevant in the t's for E1 then it must still
be relevant in the same disjunct of E3. A contradiction.

If c/X  a1 because it is free in E1 then by definition, c/X  a3, a contradiction.
If c/X  a1 because it constrains a free variable through the p's then c/X  a3.
If c/X appears in both the p's and predicate q, then c/X  a3 by definition.
Now we need to be careful. Remember that a2 is selected from attributing a1g. It is
possible for a1g   as in the case of Cartesian Product. attr a1g, E2, d' is non-empty
only when there is a relevant variable in q. Recall that E2 is in DNF so the free variables are
the same in each disjunct of E2.
If cX  a2 because it is free in E2 and free in E1, then we know cX  a3, a contradiction.
If cX  a2 because it is free in E2 and bound and relevant in E1, then we know cX  a3, a
contradiction.
If cX  a2 because it is bound in E2, occurs among the predicates rj of a disjunct in E2
(similarly for the other disjuncts of E2 i.e. sj) and constraints a free variable in E2 that is
relevant in E1 (through predicate q in E1), then we know cX  a3, a contradiction. 

Therefore, we conclude that attribution composition computes the attribution of a composed
expression. 

By representing our expressions in DNF, we can treat each disjunct independently and
compose in a depth first manner across all disjuncts and all IDB. As before, we can easily
imagine unfolding successive levels of IDB.

4.7 Adding negation
Negation, in general, poses problems for query evaluation (Abiteboul, Hull, and Vianu 1995).
Likewise, negation presents problems for attribution. From Section 3, the intuition behind
attribution for negation corresponds to the logical interpretation of safe expression. We can
confirm the truth of a negated assertion (fact in the database) by verifying that the (positive)
assertion itself does not exist in the database. Unfortunately, this intuition breaks down under
composition of queries with negation. We identify a subset of queries with negation under
which composition is preserved.

82

4.7.1 Attribution concept

As indicated in Section 3, to verify that the (positive) assertion does not exist, the attribution
must therefore consider (include) every true substitution for the negated sub-formula. We
first illustrated this intuition in Example 3.13 and Example 3.14 of Section 3.

Example 4.30 Attribution for an expression with negation
 E32  ABC | rABC ∧ ¬ sABC

To verify that a substitution <1/A, 2/B, 3/C> is in the attribution for the expression, we must not
only verify that Ir1/A, 2/B, 3/C  true but also that for every substitution <x/A, y/B, z/C> such
that Is x/A, y/B, z/C   true, x  1 or y  2 or z  3. 

Moreover, if there is more than one negated predicate, we need to confirm that a valid
substitution for the expression does not make any of the negated predicates true. We would
do so by confirming that a substitution for the formula does not include any true substitution
for any negated predicate.

4.7.2 Types of attribution

To formalize attribution in the context of negation, we introduce a few additional
assumptions. First, using standard rules, all negations are pushed down to the level of
individual predicates. The negation of an arithmetic comparison is simply expressed as its
logical converse (e.g.  X  Y  X  Y). Second, formulas continue to be flattened as the
disjunction of conjuncts where all conjuncts are either positive or negative predicates or theta
comparisons. Within each disjunct, negated predicates are limited for safety as per the
syntactic rules described earlier. A formula is therefore a disjunction of conjuncts of the
form:

p1  p2  …  pn   q1   q2  …   qm  t1  …  to

where the p's are non-negated predicates, the q's are negated predicates, and the t's are theta
comparisons. For safety, for each j in m, every argument in qj must also appear in some
predicate pi or bound to a constant. Based upon these extensions to address negation, we can
now redefine what we mean by attribution.

Definition 4.16 Comprehensive attribution
The comprehensive attribution for an expression in DNF, possibly with negated predicates, is
the union of the comprehensive attributions for each disjunct, f. The comprehensive
attribution for each disjunct is a set of triples <a, n, f> where a is a substitution for which the
non-negated predicates pi and -comparisons to in disjunct f evaluate to true and n is itself a
set of substitutions <b, m, qj >. The set n ranges over all of the negated predicates qj and
includes every substitution b that makes qj true. Assuming that there is no b that agrees in the
corresponding substitutions for values of a Iqja  false we may then concludes I qja
 true. By default, m is ∅. 

 83

In source attribution, the intuition is that we want to know the predicates (and their
corresponding substitutions) from which values in the query result are drawn. Therefore, only
non-negated predicates are considered as possible sources. Negated predicates because they
do not match our intuition as a source for values in the result.

Definition 4.17 Source attribution
The source attribution for an expression in DNF, possibly with negated predicates, is the
union of the source attributions for each disjunct, f. The source attribution for each disjunct is
a set of triples <a', n, f> where a' is a sublist of substitutions a for non-negated predicates of f
that contain free variables and make f true. n is ∅. 

For relevant attribution we want to consider variables that in some way affect the result.
Because of the safety requirement, renaming any variable in a negated predicate would
compromise the expression. As a consequence, any variable in a negated predicate is relevant
and we have the same issue as introduced in comprehensive attribution for capturing all
appropriate substitutions.

Definition 4.18 Relevant attribution
The comprehensive attribution for an expression in DNF, possibly with negated predicates, is
the union of the relevant attributions for each disjunct, f. The relevant attribution for each
disjunct is a set of triples <a, n, f> where a is a substitution for all relevant variables in f that
make f true. All variables in the head (free in the formula for the expression) are relevant. In
addition, a bound variable is relevant to the result if renaming the variable to some name not
already in the expression (or eliminating a constant) would relax a constraint on one or more
of the attribute domains in the result relation (free in the formula for the expression). By
definition, any variable in a negated predicate is relevant. Therefore, as with comprehensive
attribution, n is itself a set of substitutions <b, m, qj >. The set n ranges over all of the
negated predicates qj and includes every substitution b that makes qj true. We therefore know
that Iqja  false and I qja  true. By default, m is ∅. 

4.7.3 Attribution equivalence and composition

Having updated our definition of attribution, we consider the impact of introducing negation
on our attribution properties. Determining the equivalence of queries with negation is an open
question that has persisted for many years (Abiteboul, Hull, and Vianu 1995). It is not an
issue that we will attempt to resolve here. Consequently, claims about the attribution of
equivalent queries with negation are also outside the scope of this thesis.

However, as seen in our discussion of attribution for CQT expressions, we can address the
issue of attribution composition separately. With the introduction of negation, it is apparent
that, in general, the property of composition no longer holds. We cannot calculate the

84

attribution for a query result by recursively tracing backwards through each sub-formula.
However, we identify a subset of queries under which composition continues to hold.

First, we notice that, in the general case, nested negations (i.e. b  ¬¬b) compromises our
ability to compose attribution.

Example 4.31 Intersection of predicates a and b using nested negation
Consider two expressions E33 and E34 with the following formulas.
f33  a ∧ ¬ (a ∧ ¬ b)
f34  b ∧ ¬ (b ∧ ¬ a)

Logically, we know that E33  E34. Indeed when we put E33 and E34 into canonical form by
pushing and distributing the negation, we end up with f33 = f34 = a ∧ b. However, suppose we
defined the following IDB:
c  a ∧ ¬ b
d  b ∧ ¬ a

A substitution in the attribution of c includes values for variables in a and every substitution
that makes b true. Likewise for a substitution in the attribution of d. Consider again our
original expressions now defined using IDB c and d.
f33'  a ∧ ¬ c
f34'  b ∧ ¬ d

By expanding c and d and pushing down the negations, we know that the source attribution
for E33  source attribution for E34  source attribution for a ∧ b. However, we can equally
see that the source attribution for E33'  substitutions in A while the source attribution for E34' 
substitutions in b.

Similarly, negations are fully eliminated in the canonical form of E33 and E34 suggesting that a
comprehensive or relevant substitution in the attribution for these expressions will be a single
list of variables that make a and b true. However, E33' and E34' contain negated literals
suggesting that a substitution will include a list of variables that make a (or b respectively)
true and then a set of all substitutions that make c (or d respectively) true. Composition would
then recurse on all substitutions in c (or d) rather than a single substitution as in a  b. 

We can think of the phenomenon in the example above as an additivity property that reflects
attribution composition. If R is an expression composed on Q and r is a result in both Q and
R, then the attribution for r in R should at least include the substitutions for the attribution of r
in Q. Unfortunately, as seen in the example above, composition breaks down when we allow
negations to cancel one another.

The problem extends beyond nested negations, however. As demonstrated below, distributing
negation over conjunction also violates the additivity observed above.

 85

Example 4.32 Distributing negation over conjunction
Imagine expressions with the following formulas.
 f35  C ∧ ¬ A ∧ B
 f36  C ∧ ¬ A  C ∧ ¬ B
Here, we see that the attribution for the first is not the same as the attribution for the second
because of what you associate in the attribution. Logically the two are equivalent. However,
a triple in the first expression has n  b, m, A  B | Ib/XA  B  true. A triple in the
second expression looks like either b, m, A | Ib/XA  true or b, m, B | Ib/XB 
true. It is straightforward to see that for substitutions a, n ,f where a is only absent from A
or from B but not both, that the substitutions could look quite different. as a consequence, it
is clear that negation poses some problems for our intuitions about attribution.


However, by further constraining the syntactic rules under which we may negate predicates,
we arrive at a rudimentary subset of the DRC where negation is permitted yet attribution
composition is preserved.

Definition 4.19 Attributable expression.
To define an attributable expression, we extend the rules for safety presented at the beginning
of this Section (Ullman 1988). In particular, we introduce the concept of a negatable formula.
Only a negatable formula may be negated and remain attributable.
1. Any atom is a formula and is negatable.
2. The disjunction of non-negated atoms is a negatable sub-formula.
3. The disjunction of negatable sub-formulas is negatable. 

Examples 4.33 Negatable sub-formulas in the safe DRC
f37  A   B   C
Where A, B, and C are relational predicates representing base relations. Note that the rules of
safety require that every variable appearing in B and C also appear in A.

f38 A  B  C
The B  C is a negatable sub-formula. When we push the negation into the formula, then the
formula becomes the same as the first formula.

f39  (A  B  C  D is a disjunction of negatable sub-formulas that are negatable on their
face. However, were either of the expressions already negated, then the formula would no
longer be negatable. 

We suggest that the attribution of attributable expressions composes. Because we have
updated our definitions of attribution to account for negation, our algorithm for composing
attributions requires corresponding updates. We first amend our algorithm for calculating

86

attribution and then prove that, for negatable expressions, that the algorithm calculates the
attribution for an extended expression.

Algorithm 4.3 Attribution composition for negatable query expressions

Compose (A, s) where A is the attribution for s, a disjunction of CQT+ sub-formulas with
negated predicates, each of which may itself be a disjunction of CQT+ sub-formulas with
negated predicates.

Compose (A, s)  (a)
if s  ∅ then return   (b)
else pick fi a disjunct in s  f1  f2  … fx (c)
 s  f1  f2 … fi-1  fi+1  …  fx (d)
 A'  a,f | a,f  A and f = fi (e)
 Compose (A, s)  ComposeD A',fI (f)

ComposeD A, f  (1)
if f has no q's then return A (2)
else pick qi, an IDB in f (3)
 f  p1  p2  …  qi-1  qi+1…qm (4)
 if qi is negated (5)
 then ComposeD UnfoldN A, qi, f (6)
 else ComposeD Unfold A, qi, f  (7)

UnfoldN A, qi  (8)
if A is ∅ then return   (9)
else pick some triple <a, n, f>  A (10)
 let g be the formula for the definition of qi (11)
 let u be the unifier for h  unifyf,g (12)
 n'  RewriteN (n, u, qi (13)
 ua, n', h  Unfold A  a, n, f, qi (14)

RewriteN n, u, qi  (15)
foreach triple <b, ∅, q> in n where q  qi (16)
 n  n  b, ∅, q (17)
let g be the formula for the definition of qi (18)
B = attrug, d' (19)
n  n  B (20)

Unfold A, q  (21)
if A is ∅ then return   (22)
else pick a, n, f  A (23)

 87

 let g be the formula for IDB E representing q (24)
 let u be the unifier for h  unifyf,g (25)
 let E' be E as defined by g with the renaming of u (26)
 B = attr E' aq/x , d' (27)
 Rewrite B, ua  aq, h  Unfold A  a,f, q  (28)

Rewrite B, a, h  (29)
if B is ∅ then return   (30)
else pick b, m, g  B (31)
 a  b, n  m, h  Rewrite B  b,g, a, h (32) 

We took our original algorithm and first extended it to account for unions. Here, we make
several changes to account for negation. First and foremost, we extended attribution from a
pair to a triple consisting of a substitution list a, a formula f to which the substitution list
provides a true interpretation, and a set consisting of the attributions for each negated
predicate in the formula. As a consequence, the descendants of our initial functions to unfold
and rewrite are updated to return triples in lines (23), (29), and (32). More significantly, we
must now consider IDB whose definition includes negated predicates as well as negated IDB.

We calculate the attribution of an IDB with negated predicates in line (27). We know that for
attributable expressions, the unification of our original formula with the definition of the IDB
in line (25) simply adds additional, negated conjuncts. Consequently, we may simply
combine attributions for negated predicates in the original expression with attributions for
negated predicates in the IDB as seen in line (32).

For negated IDB that are also attributable, we know that certain conditions must hold.
Specifically, we know that the IDB must be a disjunction of non-negated predicates. Pushing
negations down, this translates into a unifier that effectively substitutes a conjunction of
negated predicates for one negated predicate. Accordingly, for each attribution triple of the
original formula, we simply remove the attributions for the negated IDB. This is done in lines
(15) – (17). In place of these attributions, we substitute the attributions for each predicate in
the definition of the IDB. Note that in line (19), we simply attribute the formula for the IDB
(assuming the unifier u to avoid conflicts in variable naming). If the IDB is a disjunction,
then the attribution will comprise the union of the attributions for each disjunct.

Based upon this revised algorithm, we now offer:

Theorem 4.6 Attribution composition
Our algorithm for attribution composition computes the attribution for attributable
expressions.

For IDB that do not include negation, the algorithm is unchanged except for the introduction
of a third component to the substitution (which is empty in the case of no negated predicates).

88

Under this circumstances, the proof therefore follows that of Theorem 1.5. More interesting
are the two cases of IDB that include negations and negated IDB.

Our algorithm for attribution composition computes the attribution for the union of
attributable, composed CQT+ expressions. Assume the following CQT+ expressions E1, E2,
E3 defined by the formulas f, g, and h respectively as:

E1  f  p1  p2  …  pn  q  t1  t2  …  where q is the only IDB in E1
E2  q  g  r1  r2  …  rm  s1  s2  …  so where ri, si  d
E3  h  p1  …  pn  r1  …  rm  p1  …  pn  s1  …  so  t1  … 

Note that subject to safety, any of the predicates (with the exception of the IDB q) may be
negated. To negate the IDB q, as articulated in Definition 1.17, we are limited to disjunctions
of non-negated predicates. Our IDB are thus limited to expressions of the form: E4  q  g 
r1  r2  …  rm

Given E1 defined on d' d  q and r, the result of evaluating E1 on d', attribution
composition computes the [comprehensive | source | relevant] attribution of result r in terms
of d as defined by attrr, E3, d.

Lemma 4.15 a3,hi  A3 is a comprehensive attribution for E3 if and only if a3,hi 
Compose A1,f.

Case 
We first consider the case where the IDB itself is not negated although any of the base
relational predicates (e.g. r  d may be negated (subject to safety). Pick some a3, n3, h 
A3. We know that a3f and a3g provide substitutions for the non-negated predicates in a
disjunct of f and g by definition. Furthermore, we know that n3  b1,m,k|m = ∅  k is a
negated predicate in a disjunct of h that appears also in the corresponding disjunct of f} 
b2,m,k|m  ∅  k is a negated predicate in a disjunct of h that appears also in the
corresponding disjunct of g}. For every negated predicate k, we know that n3 includes every
substitution b that makes the non-negated predicate k true whether the predicate is in E1 or E2.
Thus we can model the proof for Lemma 4.10 to verify that the property holds for non-
negated predicates and we know that the property holds for n3, the set of substitutions for
negated predicates in hi.

What then if we allow the IDB q to be negated? We know that to be attributable, the IDB
must be defined in the form of E4, a disjunction of attributable subformulas. Second, we
know that when unfolded, pushing down the negation transforms the disjunction into a
conjunction where every predicate in g (the formula for E4 is negated. So in h, by definition
for the attribution of negated predicates, n3 includes the union of the set of all true
substitutions for each negated conjunct. But we know that b1,m,k when k is an IDB in E1
will include every true substitution b1 for the negated predicate k. Moreover, the negated IDB
q is safe in E1 but were we to attempt attributing the negation of the formula for E2, we would

 89

have an unsafe expression. Instead, we know that q is negated so we call UnfoldN instead.
In the subsequent call to RewriteN we see how we remove the positive substitutions for q
(See Algorithm 4.3 line (17)) and replace substitutions in q with the full set of substitutions
that make the ug (the formula for E4 subject to appropriate renaming true (See Algorithm
4.3 line (19)). Thus, we see that n3 is again n1  n2 (minus the substitutions for q which do
not appear in hi) and we conclude that → holds.

Case 
Suppose now that you have some a1  a2, n1  n2, hi where hi is a disjunct of h and 
denotes the union of n1 and n2 subject to the removal of substitutions for the IDB of n1 that are
unfolded in n2. (Note that if the IDB is not negated, then  reduces to . We pick some a1 
A1 and pick a2 by construction as before. Now, we know that a1  a2 gives substitutions for
non-negated predicates in a3 as before. However, a2 now also includes b2,m,k for negated
predicates in g likewise for b1,m,k in f. But each negated predicate in f and each negated
predicate in g is also negated in h by our limitation on attributable expressions. As a
consequence, we know that we can a1  a2 gives a3 and that n1  n2. Hence, we may conclude
that ← holds. 

Lemma 4.16 a3,hi  A3 is a source attribution for E3 if and only if a3,hi  Compose
A1,f where A1 is the source attribution for E1.

We know by definition that a source attribution does not include substitutions in negated
predicates. Therefore, we need only consider the case where predicates other than the IDB
are negated. Therefore, we only unfold non-negated IDB and consider only source
substitutions in non-negated predicates. We see from Lemma 4.13 that the substitutions in
both the negated and non-negated predicates compose. Thus, we conclude that the proof then
mirrors the proof for the composition of source attributions for the union of CQT+
subformulas in Lemma 4.11. In particular, note that ruling out negated IDB, a negated
predicate in f or g corresponds to a negated predicate in h and vice versa. Likewise for non-
negated predicates. See Lemma 4.11 for the case of a free variable in the IDB. 

Lemma 4.17 a3,h  A3 is a relevant attribution for E3 if and only if a3,h  Compose
A1,f.

Where A1 is a relevant attribution for E1. The challenge in prior classes of queries was to
verify that variables relevant in E1 and E2 respectively were relevant in E3 and vice versa. In
this way, we could construct relevance in the iterative manner of comprehensive and source
attribution. For variables in negated predicates, however, this is trivially true simply because
any negated domain variable is defined as relevant. Consider negated predicates in f or g
(apart from the IDB). Then, the same variables and predicates are relevant in the unfolding to
h and thus relevant. For a negated IDB, our condition on attributable expressions guarantees
that every predicate in g is a negated conjunct and is therefore relevant. Thus, for negated

90

IDB, we simply substitute the negated IDB in a1, n, f with every positive substitution in n.
Furthermore, for purposes of safety, every variable in the IDB q of f must be relevant in the
non-negated predicates and so must also appear in h. 

Thus, building heavily upon Theorem 4.5, we conclude that attribution composition computes
the attribution of a composed expression provided that the constituent expressions are
attributable. 

4.8 Summary
We began with an overview of the domain relational calculus upon which we build our formal
attribution model. We first define our attribution model for simple, conjunctive queries. The
model includes definitions for three different types of attribution as well as several different
properties of these different attribution types. In particular, we use the properties of
conjunctive queries to identify three different categories of equivalence properties and
granularity principles.

Having presented a preliminary model, we generalize the model by progressively increasing
the expressiveness of the query language for which the model is defined. In the first step, we
introduce arithmetic comparisons (omitting explicit equality). Our reliance upon conjunctive
query properties to establish equivalence causes conclusions about "relevant" attribution to
break down under theta operators. We indicate how explicit equality compromises the
attribution of strictly equivalent query expressions.

Subsequent steps introduce union and then negation into the query model. Composition is the
only property that continues to hold when unions are permitted. Finally, all attribution
properties fail upon incorporation of negation into the query language. However, we define a
subset of attributable expressions for which the property of composition is preserved.

5 Extended algebra
Unfortunately, while practical systems today are rooted in the Domain Relational Calculus
from which we draw our definitions for attribution, conventional systems do not query using
the DRC. Fortunately, the relational algebra, a second formal query language that shares the
logical foundations of the DRC, aligns closely with SQL, perhaps the most widely used
commercial data query language.

In this Section, we operationalize our model by extending the relational algebra to support
attribution. We begin by sketching our intuition behind an algebra for attribution. Next, we
provide some basic definitions from which we build the extended algebra. After presenting
our attribution algebra, we consider some of the extended algebra's properties. We first show
that the attribution algebra is closed. We then show that the extended algebra reduces to the
standard relational algebra and is a consistent extension of the standard algebra (both
properties are elaborated upon below). Finally, we prove that for algebraic expressions
without nested negations, the attribution algebra supports the formal model. That is to say
that for any algebraic query expression without nested negations, the extended algebra
produces the relation-level source granules for attribute-value pairs in the result relation as
defined by the formal model.

5.1 Algebra for attribution
In our extended algebra, metadata to calculate source, comprehensive, and relevant attribution
is associated with attribute-value pairs of the relational data model. We propagate the
attribution metadata in an eager fashion that updates source, relevant, and comprehensive
attribution with each successive query operation.

In Section 2 on Related Work, we noted that eager approaches continuously maintain
attribution values. While the overhead is higher, response to an attribution request is
correspondingly faster. Purely lazy approaches, by contrast, wait until a request for
attribution is posed. Depending upon the motivation, different applications might prefer one
approach to the other. Because intellectual property provisions, as a matter of policy, apply
uniformly, eager approaches may make the most sense. For data sets that are of generally
high quality, a lazy approach for tracing anomalous values might be more appropriate.

For simplicity, we leverage the granularity intuition from Section 4. Associating attribution
with each attribute-value pair corresponds to value-level result granules. Value-level result
granularity preserves the observation that different attribute-values in the same tuple may
draw from different sources and be subject to different constraints (source and relevant
attribution). Conversely, rather than maintaining substitutions and query expressions, we
propagate only relation names and query expressions. Relation-level source granularity
certainly does not correspond to all of the different intuitions, but it both limits the amount of
metadata maintained and propagated while satisfying the needs for specific attribution
motivations. As argued earlier in our discussion of granularity, some issues such as
remuneration or intellectual property are addressable by coarse-grained source granules.

92

5.2 Basic definitions
To present the extended algebra, we begin with a few basic definitions both as a brief review
and as an introduction to the notation used throughout the remainder of this Section.

Let D  D1  D2  …  Dn be the set of disjoint domains over which all relations are defined.
A scheme is a pair J, D where J is an index (a set of integers) from 1 to maxJ and D is a
function that maps every element in the index to a domain in D D : J  D. Note that in
practice, this is no different than traditional attribute-value naming and is done here for
notational convenience (Ullman 1988). A relation is then defined over a scheme as a finite
subset of the Cartesian product of the domains in the scheme. Each element t of a relation R
defined on scheme J,D, written t  R, is a tuple of scalars where for j  1…maxJ, tj 
Dj.

The relational algebra is then defined in terms of two unary and three binary operators that
take one (or two in the case of binary operators) relations as arguments and returns a single
relation. Domains in D are considered  comparable meaning that we can evaluate the binary,
Boolean operators , , , ,  for values in each domain.

Formal definitions of the unary and binary operators are given below. Here we offer more
colloquial intuitions. Select  is a unary operator that takes a relation R and a -condition.
The resulting relation S is a subset of R containing all tuples of R that satisfy the -condition.
Project  is a unary operator that takes a relation R on scheme J,D and a set of indexes K
 J specifying a subset of the domains in R. The resulting relation S contains unique tuples of
R as defined by the projected domains (only values in domains Dk).

Natural Join  is a binary operator that concatenates tuples from each input relation R and
S to create a single result tuple. For specified attribute domains that appear in both relations
(e.g. as in the case of a foreign key), the duplicate occurrence is eliminated. Result tuples are
those formed by R and S provided that the tuple from R and the tuple from S agree in the
value(s) of all specified duplicate domains. Union union takes two relations R and S,
defined on the same schema, and returns a relation containing all tuples in R and S.
Difference  takes two relations defined on the same schema and returns those tuples that
appear only in R.

Finally, throughout the remainder of this Section we refer to the source of a tuple or the
source of the specific instance of a value (i.e. the unique tuple in which the referenced
instance of a domain value appears) as a scalar representing the relation in which the tuple
appears. A source is a relation name.

 93

5.3 Extended algebra

5.3.1 Extended relation

We continue to define the set of all domains D and a relational scheme J,D as before. In the
standard relation, each relation element is a tuple of scalars drawn from the corresponding
domains. In an extended relation, however, every scalar is associated with two sets of
sources and extended tuples are associated with an additional set of sources.

Definition 5.1 Extended relation R'
An extended relation R' over scheme J,D is a finite subset of the Cartesian product of cells
written E1  … EmaxJ  2S. 

Definition 5.2 Extended tuple t'
An element t'  R' is an extended tuple of R'. An extended tuple is a tuple of cells paired with
a set of sources that returns the comprehensive attribution for every cell in the tuple. The jth
element of t' is the cell denoted by t'j and the set of sources comprising the comprehensive
attribution for the tuple is referenced as tC'. 

Definition 5.3 Cell Ej
A cell is defined with respect to an extended relation R' on a schema J,D. A cell is a triple
composed of a scalar drawn from an attribute domain and sets of sources corresponding to the
source attribution and relevant attribution for the scalar. For a scheme J,D and j  J, we call
Ej the Cartesian product Dj  2S  2S. We reference these elements as tVj, tSj, and tIj. 

Two or more tuples with identical values but different source sets are said to be weak
duplicates. Such tuples are also referred to in the literature on extended algebras as value-
equivalent tuples (Dey, Barron, and Storey 1996; Dey and Sarkar 1996).

Definition 5.4 Weak duplicate
Given two extended tuples t1 and t2 in extended relation R defined over the scheme J,D, we
say that t1 and t2 are weak duplicates if and only if j  J, t1 Vj  t2Vj. 

5.3.2 Operations on extended relations

We now define a number of operations on extended relations from which we will construct
our attribution algebra. From these operations we will define our attribution algebra for
extended relations.

Definition 5.5  Weak duplicate elimination
Given an extended relation R' defined over the scheme J,D, the removal of weak duplicates
in R' is a relation over the scheme J,D:

94

S'  R'  s|r  R' and sVk  rVk, sSk  r  duprrSk, sIk  r  duprrIk, and sC
 r  duprrC . 

Weak duplicate elimination is very much like the coalesce function introduced by Snodgrass
(Snodgress 1987 cited in: Bohlen, Snodgrass, and Soo 1996; Dey, Barron, and Storey 1996)
to manage value equivalent tuples. Unlike much work in temporal databases, our  is not an
algebraic operator that users may use to manage overlapping temporal ranges.23 Rather, we
follow Wang and Madnick (1990) and Dey (1996), where weak duplicate elimination is
incorporated into the extension of each algebraic operator's definition (see below) to preserve
the relational set semantics, which does not allow weak duplicates.

The reader will note that a similar problem emerges with multiple relations involving the
same attribute as in the case of a natural join on a foreign key or attributes used in a 
comparison as in select . Because of the distinction noted previously in Section 4 between
natural join on the same attribute domain and -comparable attribute domains, we provide for
attribute coalesce.

Definition 5.6  Attribute coalesce
Given an extended relation R1 over the scheme J,D, a set K  J, the coalesce of R1 for the
attributes in K is the relation R2  R1,L over the domains in J,D such that, where eqt is
the application of the Boolean function verifying equality for all parameters on the values tvk
of tuple t, k  K:

R2 = R1,K  t2 | t1  R1 such that eqt1) and j  J  K, t2j  t1j and j  K,
t2Vj  t1Vj and t2Sj  kK t2Sk, t2Ij  kK t2Ik, t2C  t1C 

Definition 5.7 + Select+

Given an extended relation R1 over the scheme J,D, a set K  J, and a Boolean function 
over the domain Dk1 … DkK the selection of R1 on the condition  for the attributes k 
K is R2  R1,,L over the domain J,D such that, where t is the application of the
Boolean function  on the values tVk of tuple t, we define a function RelevantY that returns
the set of variables relevant to the set of domain variables Y and set X  RelevantK.

R2  

R1,,L  t2|t1  R1 such that t1 and j  J, t2Vj  t1Vj, t2Sj  t1Sj, t2C  t1C
and if j  RelevantK then t2Ij  t1Ij  kK tSk  kK tIk else t2Ij  t1Ij 

Relevant is recursively defined to identify all sources that are mutually dependent through -
comparisons. The set I updates which values in the tuple of an extended select are bound by

23 (Dey, Barron, and Storey 1996) provides a nice review of different coalesce operators in the literature to
manage time stamps

 95

evaluating the -condition. In this way, we make explicit the observation that the -condition
is relevant to specific values in the corresponding tuple of the result relation.24

Definition 5.8 + Project+

Given an extended relation R1 over the scheme J1,D1, an index J2, and a function p from J2
to J1, the projection of R1 w.r.t. p is R2  R1 over the scheme J2,D2 such that:
j  J2, D2j  D1pj, and
R2  R1  t2| t1  R1 and t2C  t1C and j  J2, t2j  t1pj. 

Definition 5.9 + Cartesian Product+

Given two extended relations R1, defined over the scheme J1,D1, and R2, defined over the
scheme J2,D2, the Cartesian product+ of R1 and R2 is a relation R3  R1  R2 over the scheme
J3,D3 such that, for M1  maxJ1 and M2  maxJ2:
J3 is an index ranging from 1 to M1  M2, and
j  J3, if j  M1 then D3j  D1j, else D3j  D2j  M1, and
R3  R1  R2  t3|t1  R1 and t2  R2 and t3C  t1C  t2C and j  J3, if j  M1 then t3j 
t1j else t3j  t2j  M1 

Definition 5.10 (+ Difference+25
Given two extended relations R and S defined over the scheme J,D, the difference of R and
S is a relation T  R  S over the scheme J,D such that T  R  S  t|s  S such that j,
tVj  sVj and r  R such that j  J, tVj  rVj, tSj  rSj, tIj  rIj  

sS sC and tC 
rC  sS sC. 

The set of sources tI captures our intuition about negation. To verify that some instance of a
value (e.g. the value in a specific extended tuple) does not exist in some extended relation S',
we must compare the value-instance to every valid substitution in S'.

5.3.3 Extended relational operators

Building from the operators defined on extended relations, we can now define the attribution
algebra as an extension of the standard relational algebraic operators. The attribution for an
expression is then defined inductively from the extended definitions of the operators.

24 We introduced the function Relevant rather than explicitly defining the term because of our difficulty in either
explicitly defining the term or in characterizing how tightly our syntactic rule bound the formal definition of
relevance. We present the following as one bound on relevance: relevanttSk is initialized to kK tSk and
recursively defined as relevanttSk  tSj where tSj  relevanttSk is not empty.
25 As will be discussed in greater detail below, the treatment of algebraic difference differs from our management
of negation in the formal model of Section 4. However, for algebraic expressions without nested negations, we
will see that the algebra and the formal model agree.

96

Definition 5.11 ' Extended select
Given an extended relation R', 'R',,L  +R',,L 

The extended select is simply the select defined on extended relations.

Definition 5.12 ' Extended project
Given an extended relation R', 'R'  + 

The extended project is a projection followed by a weak duplicate elimination in order to
account both for duplicates among extended tuples and duplicates among value equivalent
tuples.

Definition 5.13 ' Extended natural join
Given extended relations R' and S' defined on schemas J1,D1 and J2,D2 respectively with a
function p that maps H  J1 to J2 such that D1h  D2ph,
R' ' S'  R' + S', , H, H 

The extended natural join is a Cartesian product on extended relations followed by a selection
on equality for all attribute domains used (named) identically as indicated by the function p.
Finally, we coalesce on all attribute domains used (named) identically. The reader may
observe that the effect of an extended Cartesian product (' is achieved by taking the
extended natural join where H is empty. Likewise, extended Intersection ') is simulated by
taking extended natural join on two relations R' and S' defined for the same schema J,D.

Definition 5.14 (' Extended union
Given extended relations R' and S' defined on the same schema J,D, the extended union R'
' S'  R'  S' where  is the standard set union operator. 

Extended union is simply the standard set union operator that uses weak duplicate elimination
to manage value equivalent tuples with different sets of sources.

Definition 5.15 ' Extended difference
Given extended relations R' and S' defined on the same schema J,D, the extended difference
R' ' S'  R' + S' 

We can now define attribution in the context of our extended relational algebraic operators.
As we define attribution, we informally relate our algebraic definitions to the formal model of
Section 4. A formal proof of the relationship between the algebraic definition and the formal
model is provided later.

 97

Definition 5.16 Comprehensive attribution
The comprehensive attribution for a scalar tVj in the result of an extended relational
algebraic expression E having schema J,D is defined as the set tC. 

tC is in fact the comprehensive attribution for the entire tuple reflecting the observation from
the formal model that when considering relation-level source granules, the comprehensive
substitutions that make any value of tuple t in the expression true are the same for every other
value in tuple t. Moreover, managing the difference operator is actually captured in tC by
construction. This explains Definition 5.15 that updates tC with the comprehensive attribution
for every tuple of the negated relation when evaluating the difference of extended relations R
and S.

Definition 5.17 Source attribution
The source attribution for a scalar tVj in the result of an extended relational algebraic
expression E having schema J,D is defined as the set tSj. 

The attribution algebra continuously updates the source attribution for each scalar value in an
extended relation by managing the set tSj. Note that the source attribution for a value in a
tuple is not updated by the extended project or extended union except in the case of weak
duplicates. In these instances, weak duplicates represent multiple occurrences of an instance
in the same relation (project) or distinct derivations for the same instance (union) as discussed
in the formal model. Likewise, source attribution is not updated in the case of natural join
except for those values that are drawn from the same (named) attribute domain (i.e.
coalesced). In the formal model, we identified this as multiple occurrences of the same
variable in different conjuncts representing relational predicates. Note also how the set tSj is
not altered in the definition of extended set difference, corresponding to our intuition that a
negated sub-query is never a source for a value in the result of the difference.

Definition 5.18 Relevant attribution
The relevant attribution for a scalar tVj in the result of an extended relational algebraic
expression E having schema J,D is defined as the set tSj  tIj. 

Notice that the relevant attribution is defined in terms of two sets of sources, tSj and tIj.
The set tIj is not updated for extended project and extended union except in the case of weak
duplicates. Because weak duplicates represent distinct derivations for a given instance of a
value in the result, we legitimately include the relevant attribution for each weak duplicate.
We see that tIj is always updated when evaluating the extended difference but only
selectively updated when evaluating -conditions.

For extended difference, tIj is updated with the comprehensive attribution of every tuple in
the negated relation. Comprehensively attributing every tuple corresponds to our intuition
from the formal model about evaluating the truth of a negated sub-formula. We see that

98

relevant attribution includes tSj corresponding to the idea that the source of a value is
certainly relevant.

In the selection operation, we update the relevant attribution for every value in a tuple with
the relevant attribution of the selection variables. Intuitively, a selection condition restricts a
subset of (possibly all) values in the result tuple hence the introduction of the relevant
function which relations are linked through -comparison. Recall also the implicit selection-
on-equality in the natural join. Note that in the special case of natural join where there are no
shared variables (i.e. no implicit selection), the relevant attribution for values in the result are
drawn exclusively from the corresponding constituent tuple of the Cartesian product. This
corresponds to our intuition from the formal model that restricting the tuples in one argument
of a Cartesian product is not a restriction on the second argument.

5.4 Properties of the algebra
Having presented our attribution algebra, we now consider properties of the extended algebra.
We demonstrate first that the algebra is closed. Then, following the literature on extended
algebras for temporal databases (Dey, Barron, and Storey 1996), we establish that the
attribution algebra both reduces to and is a consistent extension of the standard relational
algebra. Finally, we show that, for a limited set of extended algebraic query expressions, the
attribution returned by the algebra corresponds to the relation-level source granules defined
by the formal model.

5.4.1 Closure of the extended algebra

The intuition behind closure is that an extended algebraic operation, when applied to an
extended relation(s), returns an extended relation. Maier (1983) identifies three requirements:

1. the values in each cell of the extended relation all come from the correct domains
2. there are no (weak) duplicates in an extended relation
3. the relations must be finite

Lemma 5.1 The values in each cell of the output from an extended operation on
extended relation(s) all come from the correct domains.
Case 'R' where R is defined on schema J,D: We know by definition that 'R' is
defined on a schema K,D where K  J and that for every s'  'R' t'  R' such that k 
pj  K , s'Vpj  t'Vj so all values come from valid domains. In cases where there are no
weak duplicates, then s'  'R' is value equivalent to exactly one tuple t'  R'. In this case,
s'C  t'C and k  pj  K , s'Spj  t'Sj and s'Ipj  t'Ij so the sets of scalars all come
from the appropriate domains. If there are weak duplicates among the t'Vj for all j  K, then
the sets s'C, s'S, and s'I are simply the union of the constituent weak duplicates and the union
of valid scalar sets is surely still in 2S.

Case σ'R': We assume that R' is an extended relation. Therefore, we know that t'  σ'R'
 t'  R' so if R' is an extended relation, then σ'R' must also.

 99

Case R' ' S' where R and S are union compatible in the standard sense on schema J,D):
We know that an extended tuple t'  R' ' S' must come from R', from S', or from both.
Consider first the case where t' comes from only one. Then we know for such a tuple t', r' 
R' or s'  S' such that t'  r' or t'  s' and all values come from appropriate domains. In the
case that t' comes from both, then we know, as with weak duplicates in project, that t'C  r'C 
s'C and j  J, t'Vj  r'Vj  s'Vj, t'Sj  r'Sj  s'Sj and t'Ij  r'Ij  s'Ij.

Case R' ' S': Recall from the definition that this is a Cartesian product followed by a
selection and a coalesce on the common attributes K  J. Certainly the Cartesian product of
extended relations is an extended relations because it is merely the r'  s' for every r'  R and
s'  S'. Likewise, the select also returns an extended relation (see above). Consider, then, the
Coalesce. t  R' ' S', tC is unchanged from the Cartesian product and select. For indexes j
 K we know that tj is unchanged from the Cartesian product and select. For index in K, we
know that tVk is unchanged and that tSk and tIk is the union of all values in K where each
tS and tI is from the correct domains. Hence the union must still be in 2S.

Case (R'  S' where R and S are union compatible in the standard sense on schema J,D.
For t'  R' ' S', r'  R' such that t'C  r'C  s'Ss'C so surely t'C is from the correct
domain. Moreover, j J, t'Vj  r'Vj and t'Sj  r'Sj. By construction, t'Ij is the union of
valid source sets, hence we conclude that the values in each cell of the output from an
extended operation on extended relation(s) all come from the correct domains. 

Lemma 5.2 There are no (weak) duplicates in the output of an extended operation on
extended relation(s).
First, we know that extended relations are defined as sets so that there are no duplicate
extended tuples in an extended relation. A different question is whether the extended
operators can produce weak duplicates. We know from their definitions directly that
extended select, extended join, and extended difference cannot produce weak duplicates
assuming that the initial input relation(s) are valid extended relations (i.e. with no (weak)
duplicates). The remaining operators, extended union and extended project both are defined
as explicitly calling weak duplicate elimination. Hence, we are assured that there are no
(weak) duplicates in the output of an extended operation on extended relation(s). 

Lemma 5.3 The result of an extended operation on extended relation(s) is finite.
Case 'R' where R' is defined on schema J,D: We know that |'R'|  |R'| because each
extended tuple of 'R' is a tuple of R' on K,D where K  J. At most, every tuple of 'R'
is distinct, reduced by weak duplicate elimination. Therefore if R' is finite, 'R' must also
be finite.

Case σ'R': By definition, σ'R'  R' therefore |σ'R'|  |R'|.

100

Case R' ' S' where R' and S' are union compatible in the standard sense): It must be the
case that |R' ' S'|  |R'|  |S'|. If R' and S' are both finite, then so is R' ' S'. Note as in the
case of extended project, weak duplicates will reduce the cardinality of R' ' S'.

Case R' ' S': This is a Cartesian product followed by a select and a coalesce. As observed
above, an extended select either leaves the cardinality of the input relation unchanged or
reduces it. Coalesce merely collapses duplicate attribute (domains); the output of a coalesce
has the same cardinality as the input. Thus, we conclude |R' ' S'|  |R'|  |S'|.

Case (R' ' S' where R' and S' are union compatible in the standard sense): Thus R' ' S' 
R' so |R' ' S'|  |R'|. 

Theorem 5.1 The attribution algebra is closed.
From Lemmas 5.1-3, we conclude that Theorem 5.1 holds. 

5.4.2 Relationship between the standard algebra and extended algebra

Having verified that we can compose operators, we next verify that the extended algebra is
both a consistent extension of and reduces to the standard algebra. When we say that the
extended algebra reduces to the standard algebra, we are saying that the extended algebra
preserves the relational semantics. In other words, from the perspective of the scalar values
drawn from attribute domains, the extended operators treat an extended relation on schema
J,D as the standard relation would treat the corresponding standard relation on the same
schema and for the same attribute-value substitutions. Following Dey (1996; 1996), we first
define a helper function Reduce. The purpose of Reduce is to take an extended relation and
map it to the equivalent relation without the attribution extension. We then show that the
extended algebra reduces to the standard algebra through an equivalence proof. The
equivalence proof is illustrated in Figure 5.1.

Definition 5.19 Reduce
Given an extended relation R' on a schema J,D, reduceR'  t2 | t1  R' and j  J, t2j 
t1Vj also on scheme on J,D.

 101

S' ' R'
S' R' 'R'

ReduceR'

S R R  Reduce'R'

ReduceS'

S  R  ReduceS' ' R'

Figure 5.1 Reduction

Theorem 5.2 The extended algebra reduces to the standard algebra
To prove the theorem, we need simply show that the reduction holds for every unary and
binary operator of the extended algebra. In each case, we need to show both directions. The
reduction of a tuple t'  extended operator is in a standard operator applied to reduced inputs
and vice versa.

Case 'R' where R' on schema J1,D1: By definition of Reduce we know that R is also
defined on J1,D1 and by definition of extended project, we know that 'R' is defined on a
function p and produces a schema J2,D2. Note that R is defined similarly for R on
J1,D1 and the same p. Assume that R  ReduceR'. Pick some t  R. Then by
definition of ,  t1  R s.t. j  J2, t1pj  t2j. Because t2 is a set, we know that there
may be more than one such t1, but there is certainly at least one. From the definition of
Reduce, we know that for t1 on J1,D1,  t1'  R' such that j  J1, t1'Vj  t1j. But then
'R' must give t2' on J2,D2 where j  J2, t2'j  t1'pj by definition of '. And because t1
 Reducet1', certainly Reducet1'pj  t1pj. This tells us that Reducet2'  t2 so t2 
Reduce'R'. Likewise, pick some t2'  'R' where we know Reducet2' gives t2 on
J2,D2 when j, t2j  t2'Vj. By definition of ' we know t1'  R' such that j  J2, t1'pj
 t2'j where there may be more than one such t1 on J1,D1. But Reducet1'  t1 on J1,D1 
R where j  J, t1'Vj  j. This means that t1pj  t1'Vpj or that t2  t2'V j  J2.

Case σ'R' where R' is defined on schema J,D: Pick t  R and assume t'  'R'
for which t  Reducet'. We know that R  t | t'  R' and j tj  t'Vj so for every t,
there must be some t'. But t satisfies ,L which means k, tV'k also satisfies , a
contradiction. Now pick t'   'R' where t  Reducet'. Then assume t  R. But if t'
 'R' then t'V satisfies ,L. But j  J, t'Vj  tj by definition of reduce so t must also
satisfy ,L which means that t  R, a contradiction.

102

Case R' ' S' where R' and S' are union compatible in the standard sense): Pick t'  R' ' S'.
If we Reducet' we get t where j  J, tj  t'Vj. But by definition, we know t'  R', t'  S',
or both. If t'  R' then Reducet'  t  R by definition which means t  R  S. Likewise for t'
 S' so certainly for both. Now pick t  R  S. Then t  R, t  S, or both. When t  R, we
know t'  R' s.t. j  J, t'Vj  tj meaning that t  Reducet'. But if t'  R' then t'  R' '
S' and the same for t  S and again certainly for both.

Case R' ' S': Pick t  ReduceR' ' S'. Then t corresponds to t'  R' ' S' where j tj 
t'Vj. J,D is the schema for R' ' S'. Then j, t'Vj is from R' or from S' or from both (if j
is in the k's of overlapping domains from which the selection on the Cartesian product is
made). But for R', t'Vj  tj  R. Likewise for S' and S. We note that for t'Vk, tk holds
in R and S. Certainly t  R  S. Now pick t  ReduceR'  ReduceS'. Then j, tj from
ReduceR', ReduceS' or both in the event that j is in the k's). From the definition of
Reduce, we see that t'Vj  tj in R' and similarly for S'. Finally, for the k's, we see that t'Vk
 R'  t'Vk  S'. Hence we conclude that ReduceR' ' S'  ReduceR'  ReduceS'.

Case R' ' S' where R' and S' are union compatible in the standard sense. Pick t 
ReduceR' ' S'. Then t corresponds to t'  R' ' S' where j tj  t'Vj. Then j, t'Vj  R'
and  S'. Surely Reducet'  t  R. And if t'  S' then Reducet'  t  S. So, we know that
t  ReduceR' ' S' appears in ReduceR'  ReduceS'. Now pick t  ReduceR' 
ReduceS'. Then j, tVj  ReduceR' and  ReduceS'. Then t'  R' such that j, t'Vj 
tj  R and t'  S'. Thus, we see that ReduceR' ' S'  ReduceR'  ReduceS'.

Therefore, we may conclude that for unary operators, t  Reduceop'R' iff t 
opReduceR' and for binary operators, t  ReduceR op S iff t  ReduceR op' ReduceS.


Having verified that the extended algebra reduces to the standard algebra, we consider the
inverse and ask whether the extended algebra is a consistent extension of the standard algebra.
In other words, we are asking whether the attribution algebra has the property that every
relational algebra expression has a counterpart in the extended algebra. Again following Dey
(1996; 1996), we first define a helper function Extend. Extend takes an algebraic expression
as a single argument and extends the corresponding relation by applying the formal model to
the DRC equivalent assuming a database of relations in the original argument. Because there
may be more than one valid extended form for a relation (e.g. depending upon the database
against which an expression is evaluated), we again turn to an equivalence proof. To
demonstrate that the algebra is a consistent extension, we want to show that extending the

 103

 extended relational operation on the extended relational inputs. This intuition is depicted in
Figure 5.2.

Definition 5.20 Extend
Given an algebraic expression E that returns a relation R on schema J,D, Extend transforms
E into its DRC equivalent F26 having formula f to construct the extended relation R'. Let
database d be comprised of the relations in the expression E and granularity A take an
attribution and return the relation names corresponding to the substitutions. Then ExtendR
 t2 | t1  R where t2C  granularitycomprehensive-attributiont1, F, d and j  J,

 t2Vj  t1j
t2Sj  granularitysource-attributiont1j, F, d
t2Ij  granularityrelevant-attributiont1j, F, d 

S  R
S R R

ExtendR

S' R' 'R'  ExtendR

ExtendS

S' ' R'  ExtendS R

Figure 5.2 Extension

Theorem 5.3 The extended algebra is a consistent extension of the standard algebra
As with reduction, we show that each extended operation is a consistent extension of its
standard analog. Let E be an abbreviation for the function Extend.

Case 'R': Pick t'  'ER: By definition, t'C  R. j t'Vj  tpj which is just
R. t'Sj  R. t'Ij  ∅. Then certainly t'  ER. Now pick t'  ER. Then t  R
for which t'Vj  tj. If we extend t into some t', we know that j, t'Sj  R, t'Ij  ∅, and t'C 
R. Of course this is just 'ER.

Case σ'R' for the selection condition ,K where R' is defined on schema J,D:
Recognizing that the selection condition ,K is the same for both  and ', we define the set X
 RelevantK for both the standard and the extended select. Pick t'  'ER. By
definition, ,K is true for all t'. Furthermore, we know t  R, j t'Vj  tj; t'Sj  R; t'C 

26 See (Ullman 1988)

104

R and x  X, t'Ix  xt'Ix  t'Sx. j  X, t'Ij  ∅.27 But the set of all such t is
simply R which extended is the set of all t'. This is just ER. Similarly, we can pick t'
 ER which is just the extension of t  R. Then we know that ER gives t' such
that t'C  R and j t'Vj  tj; t'Sj  R; t'C  R and for X (in this case X  J), x  X,
t'Ix  xt'Ix  t'Sx. j  X, t'Ij  ∅. But this tuple is certainly in ER because 

R 
R and we know that t satisfies ,K as does t'. Therefore we know t'  'ER.

Case R' ' S' where R' and S' are union compatible in the standard sense): If t'  ER '
ES then t'  ER, t'  ES, or both. If t'  ER then t  R, j t'Vj  tj; t'Sj  R;
t'Ij  ∅ and by definition, t'C  R,S. Certainly if t  R, t  R  S. Moreover, because t' 
ES then we know there is no t" in ES for which j t"j  t'j. Thus, we know that t' 
ER  S. The same holds for t'  ES. Now suppose t'  ER and ES. Then t1  R and
t2  S. If we were to extend t1 and t2 we would find that for t  t1  t2 when j t1j  t2j,
t'Vj  t1j  t2j; t'Sj  t1'Sj  t2'Sj  R,S; and t'Ij  t1'Ij  t2'Ij  . t'C  t1'C  t2'C
 R,S. But for t1  t2 certainly t  R  S hence t'  ER  S. Now, if t'  ER  S then we
know that t  R  S s.t. t'C  R,S and j tj  t'Vj. If t  R then t'Sj  R. Likewise
if t  S. If t  R and t  S then we know t'Sj  R, S. But if t  R (and not S) then t1' 
ER and there is no t2'  ES so we know that for t'  t1' ' t2', t'  ER ' ES. We can say
the same if t  S and not in R. If t  R and t  S then we know t1'  ER and t2'  ES for
which t'  t1' ' t2'. Then j t1j  t2j, t'Vj  t1j  t2j; t'Sj  t1'Sj  t2'Sj  R,S; and
t'Ij  t1'Ij  t2'Ij  . t'C  t1'C  t2'C  R,S. Thus, we know t'  ER ' ES.

Case R' ' S'28: Let R be defined in J1,D1 and S be defined on J2,D2 with n = maxJ1 and m
 maxJ2. The result of the natural join is a relation on scheme J,D where J  n  m. K is the
set of selection attributes where K  1 … n  m and p is the projection function for J to 1
… n  m. First, assume K  ∅. Natural join then reduces to Cartesian Product. Pick t' 
ER ' ES. Then we know that j1..n t'j  t1'j  ER and that jn+1..n+m t'j  t2'j  n
 ES. Finally, t'C  R,S. But then t'1  ER corresponds to t1  R and likewise for t2' and
t2  S. Thus we see t  R  S and t'  ER  S. If t'  ER  S then we know t  R  S
s.t. j1..n tj  t1j  R and that jn+1..n+m tj  t2j  n  S. But we can extend t1 to t1' 
ER and likewise for t2'  ES. We construct t' from t1' and t2' s.t. t'C  R,S. Thus, we
know t'  ER ' ES. Now, we assume K  ∅. We then make use of Theorem 5.1 and the
earlier cases for Cartesian product, selection, and then finally projection to verify that the

27 In this instance, for x  X, t'Ix is just R. Otherwise, t'Ij  ∅. Note that in the more general case (as in the
inductive case considered later in this Section), the Intermediate set for t'Ij of t'  'R' is by default the
intermediate value for the corresponding t'Ij  R'. As noted earlier, we introduced the function Relevant as a
proxy for a syntactic rule.
28 Recall that we define natural join as a Cartesian product followed by a selection on equality for attributes on
the same domain, a coalsce, and then a projection of the duplicate columns. If there are no join attributes, then
we simply have a Cartesian product. If the two schemas are the same, then we have an intersection.

 105

property holds. In particular, we know that k  K, t'Sk  R,S and that for each k  K, we
know that x  RelevantK as in the selection condition. In this instance, t'Ix  R,S. For j
 K, t'Sj  R or S depending upon whether pj  n. Likewise for j  RelevantK, t'Sj
 t1'Ipj or t2'Ipj  n depending upon whether pj  n.

Case (R' ' S' where R' and S' are union compatible in the standard sense): If t'  ER'
ES then t' is an extended tuple t'  ER and t'  ES. This means that t s.t. t  R, t  S,
and j t'Vj  tj; t'Sj  R; t'Ij  S; t'C  R,S. But then t  R  S and it is easy to
see that extending t we get t'  ER  S. Now pick t'  ER  S. Then t s.t. t  R, t  S and
t'C  R,S. j t'Vj  tj; t'Sj  R; t'Ij  S. But if t  R and t  S, we can extend t to
t"  ER and we know that t"  ES. It is then easy to see that t"  t'  ER  ES.

Therefore, we may conclude that for unary operators, t'  EopR iff t'  op'ER and for
binary operators, t'  ER op S iff t'  ER op' ES. 

5.4.3 Relationship between the extended algebra and the formal definition

Having related our attribution algebra to the standard relational algebra, we finally consider
the relationship between the extended algebra and the formal model of Section 4. In
particular, we want to know whether the extended algebra supports attribution as defined in
the formal model.

From Theorem 5.2, we know that we can translate query expressions in the extended algebra
into equivalent expressions in the standard algebra. From Ullman (1988), we know that we
can translate algebraic query expressions into equivalent queries in the Domain Relational
Calculus. Therefore, for any query expression in the extended algebra, using the DRC
translation of Ullman (1988), we can evaluate whether the relations in the algebraic
attribution correspond to the substitutions in the formal model for comprehensive, source, and
relevant attribution. The comparison confirms that for algebraic query expressions without
nested subtraction in the right hand side of a difference expression (the subtrahend), the
algebraic attribution corresponds to the formal model.

We saw in Section 4 that because of its additivity property, attribution has complications
when faced with nested negations (i.e. x  ¬¬ x). To account for this limitation, we first
verify:

Lemma 5.4 Nested negations
Algebraic query expressions without nested subtraction in the right hand side of a difference
expression correspond to Disjunctive Normal Form DRC expressions where negations are
pushed down to literals without nested negations (e.g. canceling ¬ ¬ x). We establish this
by induction on the number of operators in the algebraic expression.

106

In the base case of zero operators, the algebraic query expression is a single relation R on
schema J,D or a constant relation. We know from Ullman (1988) that this is translated into
an equivalent relational predicate rX1,…,XmaxJ or a corresponding expression for the
constant relation t1,…,tn on J,D with formula X1  t1D1 … XmaxJ  t1D maxJ
… tnD1  … tnDmaxJ where there is a disjunct for each tuple ti. Certainly in the
base case there are no nested negations.

In the induction hypothesis, we assume that for a query with n operators, assuming no
difference operators in the right-hand sub-tree of a difference operator, the resulting DRC
translation in DNF with negations pushed down to literals will not nest negations. We want
to verify that the same holds for a query expression with n+1 operators.

Case R: The DRC expression for the projection merely reassigns the set of free and
bound variables in the formula for R so that a subset of the free variables in R are free in R
and all others are bound. Certainly the hypothesis holds.

Case σR where R is defined on schema J,D: Without loss of generality, we assume that
the selection condition is a single theta comparison on a domain in the schema of R. The
formula in the DRC expression for R is f which, by the induction hypothesis, has no nested
negations, and the formula for the selection condition is a theta comparison X  Y, X  c or
c  X where X and Y are variables for domains Dj1 and Dj2 and c is a constant drawn
from Dj1. Then, the formula in the DRC for σR is f  X  Y or f  X  c or f  c  X.
If f is in DNF with no nested negations, then we know that we can distribute the conjunction
across every disjunct in f without introducing any nested negations.

Case R  S where R and S are union compatible in the standard sense): If the formula for
the DRC expression of R is f and the formula for the DRC expression of S is g, and by the
induction hypothesis, f and g are in DNF with no nested negations when negations are pushed
down, then with appropriate renaming and reordering, the formula for the DRC expression
corresponding to R  S is f  g. Because f and g are already in DNF, no further distribution is
required. Certainly the disjunction of two formulas that satisfy the hypothesis will itself
satisfy the hypothesis.

Case R  S: The formulas for the DRC of R and S are the disjunctions f1  …  fn and g1 
…  gm respectively, where any negated literals among the fi's and gj's are safe (i.e. bound)
within each disjunct. Then with appropriate variable renaming and reordering, the formula
for the DRC of R  S is f1  …  fn  g1  …  gm. After distribution, we have f1  g1  f1 
g2  …  f2  g1  …  fn  gm where each fi and gj is a conjunction of positive and negative
literals so certainly the formula for the DRC of R  S is also in DNF where the natural join
does not introduce nested negations.

Case (R  S where R and S are union compatible in the standard sense where the subtree for
S has no difference operators: The formulas for the DRC of R and S are the disjunctions f1 

 107

…  fn and g1  …  gm respectively, where any negated literals among the fi's are safe (i.e.
bound) within each disjunct and there are no negated literals among the gj's. The formula for
the DRC of R  S is then f1  …  fn  ¬ g1  …  gm. Distributing the negation across the
disjuncts gives f1  …  fn  ¬ g1  … ¬gm where each gj is a conjunction of literals.
Distributing the negated conjuncts across the fi's gives f1  g1  …  gm  f2   g1 …. 
fn  g1  …  gm. Some of the literals among the fi's may be negated, but after pushing the
negations into the gj's and further distribution, into DNF, there is no introduction of nested
negations.

Consequently, we conclude that for algebraic query expressions without a difference operator
in the right-hand subtree of a difference operation, the formula in the corresponding DRC
expression, when converted into DNF, will never encounter nested negations when pushing
negations down to the literals. 

Knowing that such a relationship between algebraic expressions and DRC formulas holds, we
can therefore establish that, for the subset of queries that limits the nesting of difference
operators, the attribution constructed inductively in the algebra corresponds to the formal
definition.

Theorem 5.4 The attribution algebra corresponds to the formal model where the
nesting of difference operators is limited.
As with Lemma 5.1, we establish the theorem by induction on the number of operators in the
algebraic expression, comparing the definitions constructed in the algebra to the formal
definitions of the corresponding DRC equivalent. For notational convenience, all relations R,
tuples t, and operators  are implicitly extended.

In the base case of zero operators, the algebraic query expression is a single relation R on
schema J,D or a constant relation. We know from Ullman (1988) that this is translated into
an equivalent relational predicate rX1,…,XmaxJ or a corresponding expression for the
constant relation t1,…,tn on J,D with formula X1  t1D1 … XmaxJ  t1D maxJ
… tnD1  … tnDmaxJ where there is a disjunct for each tuple ti.

For a base relation R on J,D, we initialize the corresponding sets such that, for tuple t  R, tC
 R and for every j, tSj  R, tIj  ∅. Algebraically, then, for t  R:
Comprehensive Attribution for a value tVj is tC  R for the expression DjσtR;
Source attribution for a value tVj is tSj  R for the algebraic expression DjσtR;
Relevant attribution for a value tVj is <tSj  tIj  R for DjσtR.

The corresponding formula for the equivalent DRC is just rX1,…,XmaxJ so for tuple t  R,
the comprehensive attribution for a value Xi  ci in t is the set of substitution lists
c1/X1,…,cmaxJ/XmaxJ with no negated substitutions on the expression Xi | X1,…,Xi-

108

1,Xi+1,…XmaxJ rX1,…,XmaxJ  X1  t1  … XmaxJ  tmaxJ. Every substitution
corresponds to the relation R, which is the attribution tC in the algebra.

Likewise, the source substitution is just the substitutions in r corresponding to ci/Xi with no
negated substitutions on the same expression as for comprehensive substitution. But the
source substitutions for ci/Xi correspond only to the relation R, which is the attribution tS  R
in the attribution algebra.

Finally, the relevant attribution in the base case is just the source substitution which
corresponds to the algebraic definition tSj  tIj  R, and there are no negated predicates.
Thus in the base case we confirm that the attribution algebra corresponds to the formal
definitions of attribution.

In the inductive case, as with the relationship between the algebra and the DRC, we consider
algebraic expressions with n+1 operators.

Lemma 5.5 Inductive case for comprehensive attribution
Case R: The DRC expression for the projection merely reassigns the set of free and
bound variables in the formula for R so that a subset of the free variables in R are free in R
and all others are bound. The projection of domains K  J from scheme J,D so that the
Comprehensive attribution for any tuple t'  R is  tC t  R where tk  t'k for all k
(e.g. the weak duplicates t'. From the induction hypothesis we know that tC corresponds to
the substitutions in the equivalent DRC expression. The tuples t corresponding to a weak
duplicate of t' are exactly those substitutions that agree in tk  t'k and make the expression
for R true. Therefore, any relation U in tC corresponds to some substitution for a weak
duplicate in the DRC expression for R. Thus we conclude, by the induction hypothesis, that
the comprehensive attribution for a value in R corresponds to the formal definition.

Case σR where R is defined on schema J,D: Without loss of generality, we assume that
the selection condition is a single theta comparison on a domain in the schema of R. The
algebraic comprehensive attribution for a value of t'  σR is simply tC'  tC for t  R and j,
t'Vj  tVj. Likewise, because t' simply denotes the substitutions that make the formula in
the expression for R true in addition to making the  condition true, we know that the
substitutions for t  R are the same substitutions for t'  R' so the algebraic definition
corresponds to the formal model. Moreover, if there were any other substitutions u  R such
that u satisfies  and uV  t'V then tV  uV (or else R is not a relation). Thus, we conclude that
the comprehensive attribution for a value in σR as computed by the attribution algebra
corresponds to the formal definition.

Case R  S where R and S are union compatible in the standard sense): For a value in a
tuple t that appears only in R or only in S then certainly the algebra and the formal definitions
agree given the induction hypothesis that they agreed in R and in S. For a value in a tuple t' 
R and t'  S, the algebra will include t'C from R  t'C from S. Likewise, the formula in the

 109

DRC is a disjunction R  S and will include the substitutions from R and S corresponding to t'.
By the induction hypothesis, the substitutions in S correspond to t'C in S and the substitutions
in R correspond to t'C in R, therefore we conclude that the comprehensive attribution for a
value in R  S as computed by the attribution algebra corresponds to the formal definition.

Case R  S: Where K from the select and then coalesce of R and S is empty, a value in a
tuple t of R  S comes either from R or from S but not both. If K is non-empty, then a value
in a tuple t of R  S could come from just R, just S, or both. However, regardless, the
comprehensive attribution includes the relations in the comprehensive attribution of R and in
the comprehensive attribution of S from the constituents for tuple t, r and s. Moreover, we
know that there can only be one such r  R and s  S or R and S would not be relations. From
the induction hypothesis, rC and sC correspond to the formal definition of the comprehensive
attribution in R and S respectively. Therefore, every possible substitution that could produce r
is reflected in rC and likewise for sC. Thus, though t may correspond to multiple permutations
of disjunctions from the DRC for R and S, there are no permutations that are not captured in
rC  sC, but this is the algebraic construction of the comprehensive attribution for a value in t
 R  S. Therefore, we conclude that the comprehensive attribution for a value in R  S as
computed by the attribution algebra corresponds to the formal definition.

Case (R  S where R and S are union compatible in the standard sense and where the subtree
for S has no difference operators: For a value in a tuple t of the difference where t  r  R
and for which there is no s s.t. r  s  S, the attribution algebra will return rC sSsC. Note
than any nested difference operators in R are captured in rC while sSsC captures the
intuition of comparing every tuple of S to verify r  S. The corresponding DRC for R and S
are formulas f and g in DNF so that R  S is f  g. Distributing  g over the disjuncts of f
gives f1  g  f2  g  …  fn  g. For tuple t  r  R, rC corresponds to the
substitutions in f1 … fn such that t  r makes fi true by the induction hypothesis. Likewise,
sSsC corresponds to the set of all substitutions that makes g true. Thus we conclude that
the comprehensive attribution for a value in R  S as computed by the attribution algebra
corresponds to the formal definition. 

Lemma 5.6 Inductive case for source attribution
Case R: Assume R is on scheme J,D for function p. The DRC expression for the
projection merely reassigns the set of free and bound variables in the formula for R so that a
subset of the free variables in R are free in R and all others are bound. From the induction
hypothesis we know that tS  R corresponds to the source substitutions in the equivalent DRC
expression. The tuples t  R that produce the weak duplicate t'  R are exactly those
substitutions that agree in tpj  t'j and make the DRC expression for R true. Therefore,
j, any relation U in the set tSj corresponds to some substitution for a weak duplicate in the
DRC expression for R. Thus we conclude, by the induction hypothesis, that the source
attribution for a value in R corresponds to the formal definition.

110

Case σR where R is defined on schema J,D: Without loss of generality, we assume that
the selection condition is a single theta comparison on a domain in the schema of R. The
algebraic source attribution for a value of t'  σR is simply t'S  tS for t  R and j, t'Vj 
tVj. Likewise, because t' simply denotes the substitutions for the free variables in the
expression for R such that both R and and the  condition are true, we know that the
substitutions for t  R are the same substitutions for t'  R' so the algebraic definition
corresponds to the formal model. Moreover, if there were any other substitutions u  R such
that u satisfies  and uV  t'V then tV  uV (or else R is not a relation). Thus, we conclude that
the source attribution for a value in σR as computed by the attribution algebra corresponds
to the formal definition.

Case R  S where R and S are union compatible in the standard sense): For a value in a
tuple t that appears only in R or only in S then certainly the algebra and the formal definitions
agree given the induction hypothesis that they agreed in R and in S. For a value in a tuple t' 
R and t'  S, the algebra will include t'S  R  t'S  S. Likewise, the formula in the DRC is a
disjunction R  S and will include the substitutions from R and S corresponding to t'. By the
induction hypothesis, the substitutions in S correspond to t'S in S and the substitutions in R
correspond to t'S in R, therefore we conclude that the source attribution for a value in R  S as
computed by the attribution algebra corresponds to the formal definition.

Case R  S: Where K from the select and then coalesce of R and S is empty, a value in a
tuple t of R  S comes either from R or from S but not both. If K is non-empty, then a value
in a tuple t of R  S could come from just R, just S, or both. Consider the case where the
value in t, tVj comes from r  R or s  S but not both. First, for any tuple t, we know that
there can only be one such r and one such s. From the induction hypothesis, if K is empty or
the value does not come from D1k  D2k, then it is easy to see that tSj must either be
equal to some rSj1 or some sSj2 where R and S are defined on J1,D1 and J2,D2
respectively. If the value does come from some D1k  D2k, then algebraically, we know
that tSj  rSk  sSk. In the equivalent formula of the DRC where K is non empty, we
know that variable renaming and reordering results in multiple occurences of the same
variable name in predicates of R and predicates of S. But every substitution must correspond
to predicates of R in rSk and a predicates of S in sSk and none others by the induction
hypothesis. Then the source substitutions in the formal model correspond to the algebraic
source substitution and we conclude that the source attribution for a value in R  S as
computed by the attribution algebra corresponds to the formal definition.

Case (R  S where R and S are union compatible in the standard sense where the subtree for
S has no difference operators: For a value in a tuple t of the difference where t  r  R and
for which there is no s s.t. r  s  S, the attribution algebra will return rS. The corresponding
DRC for R and S are formulas f and g in DNF so that R  S is f  g. For tuple t  r  R, rS
corresponds to the substitutions in f1 … fn such that t  r makes fi true by the induction
hypothesis. Likewise, the tuple t should not appear in any disjunct of g therefore no

 111

substitutions of g should appear as a source for values of t. Thus we conclude that the source
attribution for a value in R  S as computed by the attribution algebra corresponds to the
formal definition. 

Lemma 5.7 Inductive case for relevant attribution
Case R: In the algebra, we project the domains D2  D1 from schema J1,D1. From the
induction hypothesis, we know that for any tuple t  R, j, tSj  tIj returns the set of
relation names that contain the substitutions returned by RelevantD1j in the DRC.
Likewise, we know that the DRC for R simply reassigns the free and bound variables in
the formula for the expression, which means that in the formal model, the expression is the
same so RelevantD2j2  RelevantD1pj2. Thus t'  R, the relevant substitutions
in the DRC are the same as that for R corresponding to the algebraic definition where t'Sj2 
tSpj2 and t'Ij2  tIpj2. Weak duplicates are simply those substitutions that agree in all
of the values of j2 but not all the values of j1. But the formal model is a set of substitutions, so
for any instance corresponding to the free variables, the substitution is the set of all
substitutions that make one instance true and is just the set of all weak duplicates. In the
algebra, this is the union of t'Sj2 and t'Ij2 over all t' that agree in the values t'Vj.

Case σR where R is defined on schema J,D: Without loss of generality, we assume that
the selection condition is a binary theta comparison ,K on a domain in the schema of R. As
noted in the definitions earlier, for simplicity, we invoke a function RelevantK to return the
same domain variables in the algebra as in the DRC expression. Therefore, by the
equivalence of RelevantX where X ranges over the domain variables in the DRC expression
and RelevantDj, we see that the algebra begins with the initial relevant relations (induction
hypothesis) and incorporates only those relations containing any domain variable X. Hence,
we conclude that for t'  R, j  J, the relevant attribution for t'Vj corresponds to the
relevant substitutions for the set of free variables on the same domain Dj in the DRC.

Case R  S where R and S are union compatible in the standard sense): For a value in a
tuple t that appears only in R or only in S then certainly the algebra and the formal definitions
agree given the induction hypothesis that they agreed in R and in S. For a value in a tuple t 
R and t  S, the algebra will combine tS from R  tS from S and treat the tI sets similarly (see:
weak duplicate elimination). Likewise, the formula in the DRC is a disjunction R  S and
will include the relevant substitutions from R and S corresponding to the free variables as they
appear in relational predicates R and S. By the induction hypothesis, the relevant substitutions
in S correspond to tS  tI in S and the substitutions in R correspond to tS  tI in R, therefore
we conclude that the relevant attribution for a value in R  S as computed by the attribution
algebra corresponds to the formal definition.

Case R  S: As in other proofs for natural join, we rely here upon composition and the fact
that natural join is defined as a Cartesian product followed by a selection, a coalesce, and a
projection. We show that the property holds for natural join with no join variables (Cartesian

112

product), and then rely upon the proofs for selection and projection shown earlier.29 Every
tuple of R  S is comprised of a tuple t1  R and a t2  S. From the induction hypothesis, we
know that j, Relevant in t1 and Relevant in t2 contains the relations for the substitutions in
the corresponding relational predicates of the DRC expression. In concatenating a tuple of R
and a tuple of S, certainly the property still holds. Thus, we may continue to apply the
induction hypothesis to the subsequent selection on equality and finally project out redundant
attributes.30

Case (R  S where R and S are union compatible in the standard sense where the subtree for
S has no difference operators: For a value tVj in a tuple t of the difference where t  r  R
and for which there is no s s.t. r  s  S, the attribution algebra will return tSj  tIj where
tIj  rIj  s  S sC. In particular, every tuple s  S becomes relevant because it is used to
verify that the instance tVj (defined as the tuple of R containing tVj) does not appear in S. rI
is how the substitutions from nested difference operators are carried forward. In Section 4 we
spoke of the additivity property in negation and we see the importance here. We account for
nested difference operators in the left hand side (minuend) of a difference operator by
continuing to add to tI. Thus we conclude that the relevant attribution for a value in R  S as
computed by the attribution algebra corresponds to the formal definition. 

Hence from the base case and Lemmas 5.5 through 5.7, we conclude that when we do not
allow nesting of difference operators in the left-hand side of a difference operator, the
attribution algebra corresponds to the formal model. 

Particularly interesting about the limitations that we impose on the difference operator is that
for such algebraic expressions, the corresponding DRC corresponds to the subset of DRC
expressions for which composition holds. Therefore, while the algebra constructs attribution
inductively from the leaves of the query tree up to the root, we are equally assured that we can
compose attribution by beginning at the root and drilling down to the base relations at the
leaves.

5.5 Summary
In this Section, we have presented an extension to the relational algebra that inductively
constructs the attribution for value-level result granules in an eager manner, as a part of query
processing. Mindful of the potential explosion in the amount of attribution metadata that such
a process can create, the algebra manages source granules at the relation level.

We first formalize the relationship between the standard relational algebra and the extended
algebra. Subject to some restrictions on the use of negation in query expressions, we then

29 Note that because we use the function Relevant defined to match the formal model in our definition of
extended select and then explicitly select on equality, the selection variables are by definition relevant to one
another and thereby implicitly coalesce the relevant (intermediate) sets.
30 The reader may recall that in proving the closure of the extended relational algebra, we verified that the result
of a Cartesian product on extended relations is an extended relation.

 113

establish that the attribution generated by the extended algebra does correspond to the formal
definition as established in Section 4. The relationship between the composition property of
attribution and the inductive algebraic process suggests some interesting possibilities for
deploying attribution as an accompaniment to a standard query processor or as an external,
network service for lazy attribution processing. Moreover, the parameterization of attribution
characteristics in the algebra hints at the potential for incorporating either other types of
metadata or more complex functions (e.g. data quality) of existing attribution characteristics.
We return to these issues in the Conclusion.

6 Attribution and the Web
We began this thesis by hypothesizing an imaginary on-line travel resource integrator that
could answer queries not only based upon its own knowledge but also by possibly gathering
and utilizing information from any number of unknown sources. Such systems, however, are
no longer hypothetical. Integration, whether for travel, finance, healthcare, current events,
etc. is now a trademark application of the World Wide Web.

We saw in Section 1 how attribution may serve many different roles in data integration. As a
consequence, we identified several dimensions to describe the problem of attribution.
Although our initial interest in this thesis stemmed from the Web, Web querying is an active
research topic that has only recently begun to approach a uniform standard (Chamberlin et al.
2001a; Fernandez and Marsh 2001). Like the integration that it enables, the underlying theory
of Web querying combines several intellectual disciplines including databases, information
retrieval, and library science (deBakker and Widarto 2001; Katz 2001; Lenz 2001). As a
consequence, we simplified our task by casting the problem of attribution in the context of the
relational data model. We presented the formal model in Section 4.

In this Section, we return to the Web. Specifically, we consider how our formal model,
developed in the context of the relational data model, relates to the semistructured data model
of the World Wide Web. We begin with a very brief overview of some general,
semistructured data concepts. Next, we consider how our attribution intuitions from Section 3
relate to the semistructured space. Finally, we consider limitations of applying our formal
model of attribution to the Web, referring the reader to work by Buneman et al (2001; 1998;
2000; 2001) on attribution (provenance) for semistructured data.

6.1 Semistructured data models
Research on semistructured data is often confused with evolution of the Web. However, the
challenge of data integration existed long before the Web. Current work on semistructured
data borrows from portions of the database literature that is often implicitly associated with
Web querying: Tsimmis, LORE, Infomaster, Information Manifold (Abiteboul et al. 1997;
Chawathe et al. 1994; Duschka and Genesereth 1997a; Duschka and Genesereth 1997b; Levy,
Rajaraman, and Ordille 1996). Despite their clear applicability to data on the Web, however,
these works were all pursued in the general context of data integration. Indeed, from a data
integration perspective, the Web has represented a working infrastructure that simultaneously
emphasized the need for and provided a testbed for research on integration and semistructured
data (Buneman 1997) (Florescu, Levy, and Mendelzon 1998). In the past five to ten years,
interest in and research on semistructured data has exploded. Our goal here is not to
summarize the field. Others have covered the foundations (Abiteboul, Buneman, and Suciu
2000). Our goal, instead, is to touch on enough of the basic principles to inform a discussion
of how attribution principles might apply in a semistructured environment.

6.1.1 Semistructured data representation

Research in semistructured data models is driven, in no small part, by the observation that
data in the "real world" seldom conforms to the well-behaved assumptions that underlie the

 115

relational data model. In particular, while data may often be arranged to have the same
appearance, the underlying structure or schemas can differ significantly. Consider, for
example, the Travel Resource Integrator from Section 1. The travel examples used
throughout Part 1 of this thesis draw data from a number of on-line, Web-accessible travel
guides. As indicated in Figure 6.1, our initial intuition was to model the data from these Web
travel guides as the relations of Section 3.

81-3-3267-400081-3-3235-1107Iidabashi

81-3-3467-941781-3-3467-0163Sangubashi

FAXPHONESTATIONPRICE
3000
3100

jyh
HNAME

Tokyo Yoyogi
Tokyo International

34000

25000

15000Ginza Dai-Ichi

20000Asakusa View

18000

HNAME ROOM
hotels

single
double
single
double
single

Asakusa View

PRICE

Figure 6.1 The Web as a relation

116

Upon closer inspection, however, it quickly becomes apparent that the relational perenity
which we assumed in Section 3 breaks down. Consider the Web guide "The Hotel Guide"
from which we populated the relation table "hotels" (hotelguide.com 2001). We include
one page of hotels in Tokyo, Japan from hotelguide.com in Figure 6.2. Aside from the fact
that there are a number of hotels that we omitted simply for tractability reasons, we quickly
notice that there are some inconsistencies. Not all hotel listings match the entry for the

Figure 6.2 Hotels in Tokyo, Japan found in www.hotelguide.com

 117

"Asakusa View Hotel". Some entries, like the "Clarion Hotel" may not quote a price for doubles.
Others, like the "Hotel Takanawa" may actually indicate a range of prices by listing two values
for a "single". Were the hotelguide.com to treat hotel entries as tuples in a relation, the schema
might include the union of all schema elements and set missing values to NULL. Rather than
treat these values as explicitly NULL, they are instead simply non-existent. There are
certainly other ways in which data on the Web does not conform to the relational model
(Florescu, Levy, and Mendelzon 1998). However, our goal here is to motivate the "schema-
less" or "self-describing" property that is characteristic of all semistructured data models.

Though there are multiple approaches to semistructured data representations, a common
theme in the different representations is an explicit rendering of label-value pairs as a
generalization of the "attribute-value" pairs in relations. By explicitly encoding every value
with a label, semistructured data models carry structure as a part of the data rather than
associating tuples (lists of values) with some external schema that conveys structure and
meaning.

The concept of self-describing data is perhaps most easily conveyed in a tree or graph. In this
overview, we follow the literature by describing the basic model as an edge-labeled graph
where edges one of two categories of information. First, edges may contain typed-data
commonly associated with the values in the attribute-value parlance of the relational data
model. Second, edges may contain names or scalars that are colloquially associated 7with the
"attribute" of an attribute-value pair.

In Figure 6.3, we suggest a semistructured model for two hotel entries from hotelguide.com.
The reader should notice how every label or edge is associated with a value where the value
may be a data value or a node denoting a set of label value pairs.

Although not depicted here, the basic model for semistructured data allows for the explicit
association of a unique identifier with a node in the graph. Object identity provides a
convenient mechanism for extending tree-structures, such as those depicted in Figure 6.3, into
a graph.31 The reader may also notice that in our example, there are no values on internal
edges. Though not necessary, the basic model does not allow values on internal edges.
Whether values are assigned to nodes versus edges and whether values are allowed on internal
nodes or edges are all variations on the basic model.32

Following (Abiteboul, Buneman, and Suciu 2000), we can serialize our graph using the
following grammar. If s is a semistructured data expression and oid is an object identifier that
names a node from which edge(s) depart:

31 Our existing hotel data might not provide the best opportunity for demonstrating graph extensions. The reader
is encouraged to refer to (Abiteboul, Buneman, and Suciu 2000) for examples. The reader may also be familiar
with the use of IDREF in XML to serve a similar function (Bray, Paoli, and Sperberg-McQueen 1997).
32 The reader is encouraged to see (Abiteboul, Buneman, and Suciu 2000) for a discussion of these variations.

118

 <s>  <value> | oid <value> | oid
 <value>  atomic value | <complex value>
 <complex value>  label: <s>,…, label: <s>

hotel

name rate rate

room price room price

"single 18000 "double

"Asakusa View
Hotel"

20000

price

hotel

name rate

price

rate

room price room price

39000 5600034000 "double"single

"Imperial

61000

Figure 6.3 Semistructured data from www.hotelguide.com

Example 6.1 Serializing a graph
If we follow convention and name oids using ampersands (e.g. &o1), we can serialize Figure
6.3 as follows:

{hotel: &o1{name: &o2"Asakusa View",
 rate: &o3{room: &o4 "single",
 price: &o5 18000}
 rate: &o6{room: &o7 "double",
 price: &o8 20000}
 },
…
 hotel: {name: "Imperial Hotel",
 rate: {room: "single",
 price: 34000,
 price: 56000}
 rate: {room: "double",
 price: 39000,
 price: 61000}
 },

 119

 …
} 

In our serialization of Figure 6.3, we deliberately omitted object identifiers from the second
hotel listing. We did so to emphasize the characteristic that, like object-oriented models in
general, the basic semistructured data model supports node identity. The model allows for the
explicit assignment of a unique identifier to a node. In the absence of assignment, every node
has an implicit identifier to establish the uniqueness used in data processing.

6.1.2 Semistructured data manipulation

Query languages serve two fundamental objectives: selection (to avoid confusion with the
relational select σ operator, we may also use the term "extraction") and presentation. A
relational query operator takes one or more relations, each of which is defined on a schema,
and extracts some subset of tuples. A new relation is constructed from the extracts.
Similarly, operators to manipulate semistructured data take, as arguments, the nodes and
edges that constitute one or more graphs. After extracting some subset of nodes (and edges),
a semistructured operator constructs a new graph. Just as there are different relational query
languages, there are different semistructured query languages. In this subsection, we focus on
a few shared concepts for selecting and presenting semistructured data.

6.1.2.1 Data extraction
All semistructured query languages support an elementary form of extraction based upon path
expressions. Path expressions are the basic construct with which semistructured query
languages specify nodes in a graph. A path is a well-understood concept from graph theory,
but we can define a path on semistructured data informally as a sequence of edges between
two nodes. The path expression /l1/l2/…/ln/lb denotes a path from node a to node b if the graph
contains nodes x1…xn and edges such that a l1 x1, x1 l2 x2,…, xn lb b (Abiteboul,
Buneman, and Suciu 2000). We may then think of a path expression as a query constructor.
The result of a path expression applied to a graph is the set of all nodes b for which there are
edges l1, l2, … ln, lb from a to b.

Example 6.2 Path expressions
For example, the path expression /hotel/name applied to the graph of Example 6.1 returns
the set of nodes for the edges "Imperial Hotel", "Asakusa View", etc.

The path expression /hotel/rate/price returns the set of nodes for the edges 18000, 20000,
34000, 56000, 39000, 61000, etc. 

120

Path expressions are richer than a sequence of labels, however. By applying regular
expressions on the alphabet of edge labels, we expand the paths denoted by (and hence the set
of nodes returned by) a single path expression.

Example 6.3 Regular expressions in path expressions
Following the regular expression syntax in Perl, we may write the following path expression:
/(hotel|hostel)/*/price. Certainly the path: /hotel/rate/price matches the pattern
of the path expression; among others, the path expression returns the set of nodes for all hotel
prices from Figure 6.3. We could also imagine integrating data from the jyh relation with
data from www.hotelguide.com by expanding the graph of Figure 6.3 with hostel edges of the
form seen in Figure 6.4. Now our path expression also matches the path
/hostel/charge/member/price. The set of nodes returned by the original path expression
now also includes nodes associated with hostel prices. 

hostel

name
contact

charge

5000

price

member

"Mr.

"81-3-3875-4411"

"81-3-3875-4411"

manager

faxphone

"Asakusa
Station"

station

"Sky Court
Asakusa YGH"

Figure 6.4 Representing hostel Web data in a graph

6.1.2.2 Data presentation
While path expressions return a set of nodes, as a query language, path expressions are
incomplete. Path expressions can extract, but a set of nodes does not by itself constitute a
graph.33 We need tools to control presentation (i.e. construct a graph from the nodes in the
result of a path expression). The use of variables, in conjunction with path expressions,
supports presentation. The result of a path expression is assigned to a variable. These
variables are used in the specification of an output path. The output path is a template for the
graph of the result of a path expression. In the same way, the "select" clause of an SQL
statement defines the schema of the result. Variables and path expressions together complete
the basic elements of a semistructured query language. Details of explicit query syntax may

33 The closure property suggests that, given graphs on inputs, the query language returns a graph.

 121

vary among specific semistructured query languages, but the roles served by variables and
path expressions are roughly the same.

Example 6.4 Constructing the result graph of a semistructured query
We use the same path expression as before to extract possible prices for lodging in and around
Tokyo, Japan except now we assign node instances to the variable X:
/(hotel|hostel)/*/price X. Now we build a path as a template for the output of the path
expression: /lodging/price/X. This path corresponds to the graph of Figure 6.5. 

lodging

56000

price

lodging

6100 5000 34000 3900

pricepricepriceprice

…lodging

lodging

lodging

Figure 6.5 Semistructured query result

6.1.2.3 Extending data manipulation capabilities
While path expressions and variables provide the basic infrastructure for a rudimentary,
semistructured query language, these tools also support much richer classes of queries. With
variable assignment, semistructured languages can support -comparisons to further restrict
the subset of nodes extracted. Through variable assignments and nested queries, we can
support complex graph restructuring.

Example 6.5 -comparisons and graph restructuring in semistructured queries
Our query might first consider each hotel or hostel separately.
 /(hotel|hostel)/ X
A "for-each" conjunction of conditions on every X nests one query within another. For each
hotel or hostel node, we assign the name to Y and the price to Z.
 /X/name Y
 /X/*/price Z
We can apply a boolean test on prices to further restrict nodes in the result graph.
 Z < 35,000
We then use our variables to define a path as a template for the result graph.
 /Y/price/Z

The final result graph is depicted in Figure 6.6. 

122

In introducing semistructured data manipulation, we have deliberately left out many details
that we feel are less germane to attribution. Most semi-structured query languages use SQL-
like select-from-where syntax and some familiar notation for expressing regular
expressions on paths.34 In addition, we can apply regular expressions on labels themselves.
For example the conjunction of two path expressions /(hotel|hostel) X and
/X/name/"A*" represent a pattern to get all lodging nodes with names beginning with the
letter "A." Other issues involve duplicate management in the face of object identity and the
type coercion required to perform -comparisons on edge labels or restructure graphs using
internal edge labels as values and vice versa. The reader is encouraged to consult other
sources on the subject (Abiteboul 1997; Abiteboul, Buneman, and Suciu 2000; Abiteboul et
al. 1997; Abiteboul and Vianu 1997; Buneman 1997; Buneman et al. 1997; Buneman,
Deutsch, and Tan 1998; Chawathe, Abiteboul, and Widom 1999; Fernandez et al. 1997a;
Fernandez et al. 1997b; Lenz 2001).35

5000 20000 18000 34000

price priceprice price

……"Sky Court
Asakusa YGH"

"Asakusa View
Hotel"

"Asakusa View
Hotel" "Imperial

Hotel"

Figure 6.6 Nested queries and complex restructuring

6.2 Attribution intuitions and semistructured data
Having introduced some of the basic principles of semistructured data representation and
manipulation, we next consider how some of our attribution intuitions apply to the
semistructured context. While the relationship between attribution in the different models is
imperfect, in this first section, we consider only how the intuitions do match. In the following
section we raise some of the complications.

34 Familiar notations for paths include "." or "/" separators. Regular expression symbols include "*" for zero or
more, "?" for zero or one, "+" for one or more, etc.
35 We intentionally steered away from explicit reference to XQuery, XPath, and other rapidly evolving World
Wide Web Consortium (W3C) standards for querying XML. We did so first to avoid the popular misconception
that XML queries are synonymous with rather than simply one (albeit prominent) example of semistructured
querying. Second the W3C standards were evolving too rapidly for us to consistently track in this document.
We do include references to the W3C work both in the in-text citations above and in the References.

 123

Our general intuition in the formal model of attribution was of substitutions that make an
expression true. If we think of a semistructured query as a conjunction of path expressions,
the analogy seems simple enough. The attribution for a semistructured query constitutes the
subgraphs that match a particular pattern corresponding to the nodes in a result graph.

Example 6.6 Subgraphs that match a particular pattern
In Example 6.3, we gave the following path expression: /(hotel|hostel)/*/price. Based
upon our sample data from Figures 6.3 and 6.4, we know that the following paths all match
the pattern:
/hotel/rate/price for the nodes with:
/hotel/name/"Asakusa View" and /hotel/rate/price/18000;
/hotel/name/"Asakusa View" and /hotel/rate/price/20000;
/hotel/name/"Imperial Hotel" and /hotel/rate/price/34000;
/hotel/name/"Imperial Hotel" and /hotel/rate/price/56000;
/hotel/name/"Imperial Hotel" and /hotel/rate/price/39000;
/hotel/name/"Imperial Hotel" and /hotel/rate/price/61000;
and
/hostel/charge/member/price for the node with
/hostel/name/"Sky Court Asakusa YGH" and /hostel/charge/member/price/5000


In the formal model, we explored different categories of equivalences. For the concept of
strict equivalence, the difference between object-identity and value-equivalence introduces a
slight inconsistency, but even with object-identity, we can imagine multiple paths in a graph
to the same node.

Example 6.7 Strict equivalence: multiple paths to the same node in a graph
For example, suppose two different youth hostels shared the same manager. We illustrate
such a possibility in Figure 6.7. 

The potential for cycles in a graph, of course, will also result in multiple paths to the same
node. In the formal model we encountered a related problem posed by the potential
introduction of redundant conjuncts. The relational calculus has the concept of a minimal
query and the question of a minimal path is an open question that we raise as a challenge
below and direct the reader to external references (Abiteboul, Hull, and Vianu 1995).

Equivalence through composition is a second category of equivalence. In the formal model,
attribution composition stems from query composition (i.e. using the result of one query as
the input to another as in IDB) The principle behind attribution composition is to recursively
construct attribution in a step-wise fashion rather than to unfold the entire query a'priori or to
carry metadata attribution forward with each value, updating with every additional operator.

Query and attribution composition has particular relevance for semistructured data and the
Web in particular. Querying against one or more graphs returns a new graph that itself can
serve as a source for a new path expression. Web portals and other aggregation engines serve
in this very manner. In Section 1, we recounted the lawsuit between Priceman and MySimon.

124

We may characterize a page in MySimon as the result of query that itself became a source for
Priceman. Analogously, we may compose attribution in a stepwise fashion.

hostel

name contact

manager

faxphone

�contact name �

hostel

"Mr.

manager

fax phone

Figure 6.7 Strict equivalence in semistructured data

Example 6.8 Attribution composition for semistructured data
From our Travel Resource Integrator of Section 1, we could imagine attributing the result of a
query on Tokyo sites to sources including www.hotelguide.com and www.jyh.com. We could
equally imagine that these sites might in turn aggregate information from additional sources.
Perhaps we might attribute the "Asakusa View Hotel" in www.hotelguide.com and discover
that the listing was itself extracted from a RoughGuides travel guide as in Figure 6.8.36 

Finally, we consider our observations from Section 4 on coarse- and fine-grained source and
result granularity. Our intuition for result granularity was the thought of rolling-up attribution
from a value to its identifying tuple or to its domain. Likewise, a domain or a tuple may share
attribution characteristics with the containing relation. Attribution at a higher level of result
granularity aggregates the attribution for each constituent. Source granularity combines our
ideas about result granularity and composition. Recognizing that a result granule associates
attribution with some subset of values, and that the result granule can itself constitute a source
for a composed query, we arrive at the concept of a source granule. Rather than attributing
from substitutions in a source relation, we might attribute to source tuples or source relations.

In Example 6.5, we saw how we could use a path expression to reference an internal node. As
with our example, at least some semistructured query languages use references to internal
nodes as a form of syntactic sugar for nesting queries on the independently named sub-
elements (Abiteboul, Buneman, and Suciu 2000). Accordingly, we might envision using this

36 hotelguide.com does not indicate that it uses Baedekker's as an external reference and we use the example
here merely to illustrate the concept of query and then attribution composition.

 125

notation to associate attribution with some internal node, implicitly referencing the subgraph
rooted at the internal node. Attribution to an internal node would correspond to the idea that
coarse granularity captures the attribution for each constituent. Moreover, because path
expressions constitute query selection constructors, we can think of specifying arbitrary
granules with query expressions. Colloquially, we can talk about attributing parts of a Web
page rather than the page en masse as in a bibliography or individual items as in a footnote.
Indeed it was because of observations about granules in semistructured data that we sought an
analogy in the relational context.

Rough Guides

Travel Resource Integrator:

Ginza Dai-Ichi

Imperial
Tokyo Yoyogi
Tokyo International
Sky Court Asakusa

HNAME
Asakusa View

HotelGuide.com (hotels)

Japan Youth Hostel Association (jyh)

Figure 6.8 Attribution composition in semistructured queries

Example 6.9 Granularity for semistructured data attribution
Referring again to Figure 6.8, we indicate how a result may be separated into different
granules. Hotel information comes only from HotelGuide.com and likewise for hostel
information. Similarly, we may not have used all of the information from HotelGuide.com,
so we can separate their data into source granules. If information about a hostel's address
information comes from a different place than pricing and management information, then we
may think of each source as the result of a query on some other source and attribute
accordingly. 

126

6.3 Challenges for attributing the Web
While many of our intuitions appear to map in a straightforward manner to the Web, there are
a number of confounding factors that make attribution on the Web a challenge in its own
right. First and foremost is the recognition that the Web itself does not conform to our basic,
semistructured data representation. As a consequence, we separate our discussion of
challenges first into issues posed by semistructured data in general and then Web specific
concerns.

6.3.1 Challenges attributing semistructured data

First, we note that in the formal model, attribution is modeled as external metadata set apart
from data domains and relations on domains. Accordingly, in the algebra, we extended the
data model by associating metadata with values and tuples (Sadri 1991) rather than
incorporating attribution metadata explicitly into the relational schema (Dey, Barron, and
Storey 1996; Dey and Sarkar 1996). In the semistructured context, it is easy to see how
attribution could emerge as a metdata graph rooted to every node in the data graph through an
"attribution label." Changes in query semantics as well as implications for a data
representation that essentially duplicates paths in the graph need further thought.

Second, our intuitions about query composition and attribution composition, while analogous
to their relational counterparts in the abstract, suffer from some difficulties in the details. In
the formal model, the attribution for a composed query is defined by the attribution for the
unfolded calculus expression. However, it is not clear that there is an equivalent for unifying
two semistructured path expressions. Consider the case where one expression is a restriction
and restructuring of the same graph (i.e. using the same nodes and labels).

A related problem, alluded to earlier, is the issue of recursive queries. Given a finite graph to
begin with, we know that a path expression on a finite graph, recursive or otherwise, must
return a finite set of nodes. However, the explicit paths that we can associate with the path
expression for any given node, in the presence of a cycle, can be (countably) infinite. While
there has been recent work on recursive queries in semistructured data (Abiteboul, Buneman,
and Suciu 2000), finding a corresponding resolution for attribution will require some
additional consideration.

Finally, graph reconstruction also poses a problem for our intuitions about granularity and
aggregating attribution over subgraphs. Because variable assignment allows unrestricted
(re)use of a given node (label) in structuring a result graph, there is no necessary dependency
between the attribution of a node and the attribution of its children in a graph. For example,
we could imagine constructing a result graph that associates hostel prices with hotel nodes.
The attribution of the hotel node would have no bearing on the attribution of the hostel prices.

6.3.2 Challenges attributing the Web

Other challenges derive from the nature of the Web itself and the recognition that data on the
Web today does not correspond neatly to any formal semistructured model. First, we know

 127

that the relational data model is value oriented. Every tuple instance is unique by definition.
As noted earlier, in semistructured data, object identity causes value-oriented uniqueness to
break down. On its own, this does not pose a problem, as the concept of identical values with
different attribution appears in the formal model. A related problem that does emerge,
however, is the question of duplicates. More generally, reflecting the Web's document-centric
history, every node is represented (no weak duplicates), and order matters (Bray, Paoli, and
Sperberg-McQueen 1997).37 The need to reference order, both for querying and attributing,
requires richer concepts.38

Apart from label order, the labels themselves pose some difficulty for being able to construct
precise paths. Although standards for XML, in conjunction with XSL and Style Sheets, are
evolving to address issues of meaningful, content-based labels, the Web today is dominated
by HTML (Chamberlin et al. 2001b; Clark and DeRose 2001; Fernandez and Marsh 2001;
Fernandez and Robie 2001; Grosso and Walsh 2000; Raggett 2000). Without special
knowledge, then, there is a limit to the data that we can extract and attribute. Consider again
hotelguide.com and their Web page on Tokyo hotels in Figure 6.2. While we hypothesized a
semistructured representation in Figure 6.3, the data on the page really appears as the HTML
that appears (in a slightly abbreviated form) in Example 6.10.

Example 6.10 HTML for hotelguide.com
A vision for the very near future of the Web calls for servers that return XML pages
associated with style sheets to control presentation (Bray, Paoli, and Sperberg-McQueen
1997). Today, however, most sites, like hotelguide.com, still present HTML. Excerpted below
is edited source from the page for Figure 6.2.

<body>
 <table width="100%" cellpadding="0" cellspacing="0" border="0">
 <tr>

 ASAKUSA VIEW HOTEL

 </tr>
 <tr>
 <td width=32% valign="top">

 3-17-1 NISHI-ASAKUSA, TAITOU-KU

 </td>
 <td width=24%>

37 The Web (and HTML in particular) was originally conceived as a tool for sharing research literature. As a
consequence, particular attention was directed towards formatting and presentation. So while an academic paper
is, abstractly, composed of different sections, we might wish to ensure that "Section 6 Data analysis" comes after
"Section 1 Introduction." Notice that our graph-based basic semistructured representation has no provisions for
explicitly stating that one node or label is first in a sequence.
38 The reader may note that the problem is not "duplicates" per say but rather one of "order." We merely use
duplicates as an example of the need to define explicit order.

128

 single

 18000

 JPY

 double

 20000

 JPY

 </td>
 </tr>
</table>

… 

In HTML, the tags (labels) are structure-based rather than content-based. As a consequence,
in writing a path to access particular items of data in HTML, we are forced to make certain
assumptions about the order of fields as well as the data that we will find in those fields (Firat,
Madnick, and Siegel 2000; Mendelzon, Mihaila, and Milo 1996).

We have continued to refer to www.hotelguide.com as a source, but in truth, the problem of
identifying a source on the Web becomes much more complex than a relation name. URLs
are clearly inadequate because of the temporal nature of data on the Web. Sites hosting
dynamic content such as news or financial information are constantly changing. Even a URL
with a path expression that specifies order may not suffice to concretely specify a distinct
value or its associated attribution path. If we reference a granule by a path, does the path
similarly name a source? In this case, a named source can contain a second source perhaps
presenting a refined case of composition. (Buneman et al. 1997) has studied aspects of this
problem in the context of keys for semistructured data, but the continual challenge will be to
extend conclusions to the ad-hoc Web.

Other such pragmatic problems related to the ad-hoc nature of the Web and naming have to
do with duplicate sites and whether replicas or mirrors are treated as distinct sources or the
same source. Versioning and the temporal nature of the Web in general will also pose
problems for attribution.

The Web today almost certainly foreshadows the future of data management. If nothing else,
the metaphors carried from the print and publishing world onto the Web will continue in some
form tomorrow. Meanwhile, as the Web continues to expand, incorporating ever more data,
so to does the need for attribution as a mechanism for managing that growth, whether for
search, intellectual property, or evaluating quality. For this reason, extending formal models

 129

of attribution (Cui, Widom, and Wiener 1997 (revised 1999); Motro 1996; Rosenthal and
Sciore 1999; Sadri 1991; Wang and Madnick 1990) into the semistructured environment is the
logical direction to look. The work by Buneman et al. is a terrific start (Buneman, Deutsch,
and Tan 1998; Buneman, Khanna, and Tan 2000; 2001; Buneman, Tajima, and Tan 2001).

7 Conclusion

In this thesis excerpt, we explored technologies for addressing attribution in the context of data
integration. While data integration is not new, modern information technologies in general and
the World Wide Web in particular have made data integration an everyday phenomenon. Web
portals, comparison sites, personalized pages, and other examples of on-line integration
exacerbate tensions about data quality, intellectual property, and data organization.

In this thesis excerpt, we focus on a technology-oriented approach to the questions of what and
where. We first present a formal model of attribution that represents what as a query result and
where as query inputs. Although our initial interest was sparked by data integration on the
Web, we construct our model in terms of the well-understood, logical foundations of the
domain relational calculus. Then, beginning with conjunctive queries, we define and evaluate
properties of attribution for several different classes of queries. We consider conjunctive
queries, conjunctive queries with -comparisons (excluding explicit equality), add explicit
equality, add union, and finally add negation.

While the domain relational calculus offers a useful framework for developing our model, the
definitions are not easily implemented. Consequently, we present an extended relational
algebra for attribution. The extended algebra manages attribution in an inductive fashion.
Metadata for specifying comprehensive, source, and relevant attribution is associated with
every value in a relation; the metadata is updated and carried forward with every successive
query operation. After showing some properties relating the extended algebra to the standard
relational algebra, we verify that the attribution returned by the algebra corresponds to the
attribution defined by the formal model for the same query.

Although our initial interest in attribution stems from the phenomenon of data integration that
pervades the Web, we develop our model of attribution in the simpler but more well-
understood framework of the relational data model. We conclude Part one of this thesis by
returning to the semistructured data models that underlie the Web. We specify some general
principles of semistructured data representation and manipulation and then discuss how our
attribution intuitions might map onto this semistructured framework.

7.1 Contributions
As noted in Section 2, the problem of attribution has been addressed from a technology
perspective as well as a policy perspective many times before. Some of the prior work has
focused on domain specific applications (e.g. geographic information systems (Lanter 1991;
Woodruff and Stonebraker 1997)) and others have focused on general models. More recently,
Buneman et al. (2001) has even developed a formal model for attribution in a semistructured
framework. However, we feel that ours is the first to present the problem in a single
framework, the dimensions of the attribution problem space, that articulates the relationship
between different technology and policy approaches. In addition, we believe that this thesis

132

does provide a number of contributions to both the existing technology literature and the
existing policy literature.

The formal model defines three different attribution types. Comprehensive attribution refers to
all query inputs. Source attribution refers to the specific inputs in which a specific value
appears.39 Relevant attribution asks which query inputs are used to define constraints or
restriction conditions on a value of the query result.

We define several properties of attribution and provide a comprehensive analysis of these
properties, covering each type of attribution for the full range of relationally complete
expressions. We show that strict equivalence for source attribution breaks down under strict
equality and that strict equivalence breaks down for all types of attribution upon introduction of
union. Attribution composition is particularly useful because it demonstrates that attribution
can be constructed inductively and carried forward with the query processing as well as drilled
backwards in a step-wise fashion. We show that composition holds for all classes of queries
through limited forms of negation and characterize those limited forms of negation.

Recognizing that we might wish to specify results or sources with varying degrees of precision,
we introduce the notion of granularity to attribution. Granularity leverages the equivalence
property of composition. Attribution is defined for a query result; result granularity attributes a
specific subset of values in a result (what data is taken) by attributing a composed query that
selects the desired values from the initial query result. Because a result granule can itself serve
as a source for a composed query, we note the parallel concept of source granularity for
specifying a subset of source values (where the data comes from).

While ours is not the first extended algebra to address attribution (Motro 1996; Sadri 1991;
Wang and Madnick 1990), we prove a number of properties that are left unspoken in earlier
work. Relating the extended algebra to the standard relational algebra, we prove that the
extended algebra is closed and that it reduces to the standard algebra.

More significantly, our development of a formal model allows us to prove a number of
properties not declared in other models. By defining attribution independently of the algebraic
definition, we can show that the attribution algebra is a consistent extension of the standard
algebra (Dey, Barron, and Storey 1996; Dey and Sarkar 1996). Finally, rather than defining the
extended algebra and then simply stating that attribution is defined as whatever the algebra
returns, we show that the algebraic attribution for a value in a query result corresponds to the
formal model. The formal model allows us to express what is meant by attribution as well as
some of its properties. The algebra provides a direct implementation of that model.

39 For any given value (what) in a query result, the source attribution identifies the specific query inputs (where)
from which the value in the result is drawn.

 133

7.2 Limitations and future work
While this thesis has attempted to cover a great deal of ground, it has also made a number of
assumptions and left many issues un-addressed. In this final section, we consider opportunities
for future work.

In terms of the formal model, there are a number of opportunities for further work within the
existing model and for expanding the current model. In this thesis, granularity is mentioned
only as an observation. We need to define granularity formally and define the relationship
between attribution for the same query at different levels of granularity. Just as we speculate
on converting between different granules, we might speculate on converting between different
types of attribution. Finally, attribution refers to the substitutions for unique instances of values
in tuples. Therefore, we should consider the role of functional dependencies.

We might also extend the model in at least two directions. First, we should consider whether
the formal model can embrace a richer class of queries. The work on data lineage, for example,
has extended to aggregation functions and more general classes of functions (Cui, Widom, and
Wiener 1997 (revised 1999)). Second, we would like to consider parameterizing the model.
Perhaps we could insert specific quality metrics or other measures that are a function of data
attribution. (Rosenthal and Sciore 1999), for example, speak of the access constraints on
integrated query results.

In considering the algebra, we first must find an algebraic definition for relevant variables that
corresponds to the formal model. We found syntactic rules that captured a superset of the
relevant variables, but had trouble defining a simple function that would support the formal
definition.

We would also like to consider the eager, algebraic manipulation of attribution to manage
aggregations or other more general classes of functions. Note that the Stanford work addresses
the problem in a lazy manner. In addition, we could consider parameterizing the algebra to
manage attribution-related metrics. Moreover, we might wish to explore whether the extended
algebra is appropriate for managing other types of metadata such as that used experimental data
collection (e.g. experimental apparatus, conditions under which the data was collected, etc.)

Extending the formal model to a semistructured data representation is also needed. As noted in
Section 6, there are a host of considerations. Naming is a problem. As we commented earlier,
how do we reference a source given that URLs are inadequate?40 A second problem is the
management of query composition and granularity. How do we frame these issues in an
environment that allows graph restructuring?41

While the current thesis focuses on the theory, there is a great deal of opportunity in
implementation. An initial algebraic prototype is described in (Lee, Bressan, and Madnick

40 In Section 6, we observed that the temporal nature of data on the Web as well as dynamic Web sites and
personalization (e.g. Web site as modified based upon cookies) can all affect the content referenced by a URL).
41 As noted in Section 6, the formal model leverages the value-oriented characteristic of the relational data model.
In semistructured data, however, different paths (i.e. different structure) can return the same values from the same
domains.

134

1997). In the prototype, attribution is calculated in an eager manner and carried forward with
every value. We would also like to implement the algorithm for attribution composition and
explore attribution composition as a hybrid lazy-eager approach. Only one step of the
attribution is calculated and propagated while enabling a step-wise backwards trace. In the
context of the Web, we might consider an attribution Web service to support attribution tracing
between integrated query results.

References
2000. Frequently Asked Questions. bookfinder.com, http://www.bookfinder.com/help/faq/.

Aber, Robert E. 1998. H.R. 2652 Testimony on behalf of Information Industry Association.

Before Subcommittee on Courts and Intellectual Property of the Committee on the
Judiciary, US House of Representatives, Washington, DC. 12 February.
http://www.house.gov/judiciary/41143.htm.

Abiteboul, S. 1997. Querying semistructured data. International Conference on Database

Theory (ICDT `97), 8-10 January, in Delphi, Greece.

Abiteboul, Serge, Peter Buneman, and Dan Suciu. 2000. Data on the Web: From Relations to

Semistructured Data and XML. San Francisco, CA: Morgan Kaufmann Publishers.

Abiteboul, Serge, Ricard Hull, and Victor Vianu. 1995. Foundations of Databases. Menlo

Park: Addison-Wesley Publishing Company.

Abiteboul, S., D. Quass, J. McHugh, J. Widom, and J. Wiener. 1997. The Lorel query language

for semistructured data. International Journal on Digital Libraries 1 (1):68-88, April.

Abiteboul, S., and V. Vianu. 1997. Querying the Web. International Conference on Database

Theory (ICDT `97), 8-10 January, in Delphi, Greece.

Akamai, White Paper. 2001. Turbo-Charging Dynamic Web Sites with Akamai EdgeSuite.

Akamai Technologies, Inc., AKAMWP-TCD1201,
http://www.akamai.com/en/resources/pdf/Turbocharging_WP.pdf.

Anderson, William C. 1893. A Dictionary of Law 1893: A Dictionary and Compendium of

American and English Jurisprudence. Ecclesiastic Commonwealth Community, 2
November 2001 [cited 26 January 2002]. http://ecclesia.org/lawgiver/C.asp.

ASCAP. 2001. About ASCAP: What Is ASCAP [cited 20 August 2001 2001].

http://www.ascap.com/about/whatis.html.

Bailey, Joseph P. 1998. Intermediation and electronic markets: Aggregation and pricing in

Internet commerce. PhD, Technology, Management and Policy, Massachusetts Institute of
Technology, Cambridge.

Baird, Douglas G. 1983. Common Law Intellectual Property and the Legacy of International

News Service v. Associated Press. University of Chicago Law Review 50:411, Spring.

Band, Jonathan. 1998. The Digital Millennium Copyright Act, analysis [Web]. Morrision &

Foerster, LLP, Washington, D.C., 20 October 1998 [cited June 2000 2000].
http://www.arl.org/info/frn/copy/band.html.

136

Band, Jonathan. 1998. Testimony on behalf of the Online Banking Association. Before

Subcommittee on Courts, Intellectual Property and the Administration of Justice, U.S.
House of Representatives. 12 February 1998. http://www.house.gov/judiciary/41148.htm.

Band, Jonathan, and Jonathan S. Gowdy. 1997. Sui generis database protection: has its time

come? D-Lib Magazine, June, http://www.dlib.org/dlib/june97/06band.html.

Bang, Grace. 1997. European Union Protection of Databases: An Overview of the Database

Directive. SUNY Buffalo, http://wings.buffalo.edu/Complaw/CompLawPapers/bang.htm.

Baumol, William, and J. Gregory Sidak. 1994. Toward competition in local telephony. AEI

studies in telecommunications deregulation, AEI studies in telecommunications
deregulation. Washington, D.C.: American Enterprise Institute for Public Policy Research.

Berkman, H. 1999. Congress Tackles Database Law. The National Law Journal, 22 July.

Bernstein, Philip A., and Thomas Bergstraesser. 1999. Meta-data support for data

transformations using Microsoft Repository. IEEE Data Engineering 22 (1):9-14.

Besen, Stanley M., Sheila N. Kirby, and Steven C. Salop. 1992. An Economic Analysis of

Copyright Collectives. Virginia Law Review 78:383, February.

Bloomberg, Michael. 1996. Michael Bloomberg on WIPO database treaty [Web news posting]

[cited 30 November 2000 1996]. http://www.ainfos.ca/A-Infos96/8/0270.html.

Bloomberg News, Staff. 2001. Bidder's Edge Settle Suits on Web Access. Los Angeles Times, 2

March, Sec C, p 2.

BMI. 2001. BMI Backgrounder [cited 20 August 2001 2001].

http://www.bmi.com/about/backgrounder.asp.

Bohlen, Michael H., Richard T. Snodgrass, and Michael D. Soo. 1996. Coalescing in Temporal

Databases. Twenty-second International Conference on Very Large Data Bases, 3-6
September, in Bombay, India, pp 180-91.

Bond, Robert. 1996. European Union Database Law and the Information Society. Hobson

Audley Hopkins & Wood, 1996 [cited 2 July 2000].
http://ds.dial.pipex.com/town/close/gbb67/itlaw/databas.htm.

Borzo, Jeanette. 2001. Searching: Out of order? Wall Street Journal, 24 September, Sec E-

Commerce (A Special Report), p R13.

 137

Bray, Tim, Jean Paoli, and C. M. Sperberg-McQueen. 1997. Extensible Markup Language

(XML). XML Journal 2 (4), Fall.

Bressan, S, C Goh, N Levina, A Shah, S Madnick, and M Siegel. 2000. Context Knowledge

Representation and Reasoning in the Context Interchange System. International Journal of
Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies 12
(2):165-79, September.

Brown, Mark. 2000. Zagat Survey: 2000/2001 Philadelphia Restaurants Edited by M. Klein

and N. Gottlieb. New York, NY: Zagat Survey, LLC.

Bulfinch, Thomas. 2001. Bulfinch's Mythology. Fisher, Bob, April 2001 [cited 26 January 2002

2002]. http://www.webcom.com/shownet/bulfinch/fables/bull20.html.

Buneman, Peter. 1997. Semistructured data. Sixteenth ACM Symposium on Principles of

Database Systems (PODS), 13-15 May, in Tucson, AZ.

Buneman, Peter. 2001. Deep linking (unpublished). University of Pennsylvania.

Buneman, P., S. Davidson, M. Fernandez, and D. Suciu. 1997. Adding structure to unstructured

data. International Conference on Database Theory (ICDT `97), 8-10 January, in Delphi,
Greece.

Buneman, Peter, Alin Deutsch, and Wang-Chiew Tan. 1998. A deterministic model for

semistructured data. Workshop on Query Processing for Semistructured Data and Non-
Standard Data Formats, http://db.cis.upenn.edu/DL/icdt.ps.gz.

Buneman, Peter, Sanjeev Khanna, and Wang-Chiew Tan. 2000. Data Provenance: Some Basic

Issues. Foundations of Software Technology and Theoretical Computer Science, 13-15
December, in New Delhi, India.

Buneman, Peter, Sanjeev Khanna, and Wang-Chiew Tan. 2001. Why and Where: A

Characterization of Data Provenance. International Conference on Database Theory (ICDT
`01), 4-6 January, in London, England, http://db.cis.upenn.edu/DL/whywhere.ps.

Buneman, Peter, Keishi Tajima, and Wang-Chiew Tan. 2001. Deep Citation and Efficient

Archiving in Digital Libraries. University of Pennsylvania for Digital Libraries Initiatives II
Meeting, http://db.cis.upenn.edu/DL/DL-roanoke.pdf.

CADP, Coalition Against Database Piracy. 2000. H.R. 354: A Balanced Approach [cited 2

July 2000]. http://www.gooddata.org/quotes.htm.

Calabresi, Guido, and A. Douglas Melamed. 1972. Property Rules, Liability Rules, and

138

Inalienability: One View of the Cathedral. Harvard Law Review 85 (6):1089, April,
http://heinonline.org.

Casey, Tim. 1998. H.R. 2652 Testimony on behalf of the Information Technology Association

of America. Before Subcommittee on Courts and Intellectual Property of the Committee on
the Judiciary, US House of Representatives, Washington, DC. 12 February.
http://www.house.gov/judiciary/41143.htm.

Chakrabarti, Soumen, Byron Dom, Prabhakar Raghavan, Sridhar Rajagopalan, David Gibson,

and Jon Kleinberg. 1998. Automatic resource compilation by analyzing hyperlink structure
and associated text. Proc. 7th International World Wide Web Conference, 14-18 April
1998, in Brisbane, Australia, http://decweb.ethz.ch/WWW7/1898/com1898.htm.

Chamberlin, Don, James Clark, Daniela Florescu, Jonathan Robie, Jerome Simeon, and Mugur

Stefanescu. 2001. XQuery 1.0. An XML Query Language. World Wide Web Consortium, 20
December 2001 [cited 7 July 2001 2001]. http://www.w3.org/TR/2001/WD-xquery-
20010607/.

Chamberlin, Don, Peter Fankhauser, Massimo Marchiori, and Jonathan Robie. 2001. XML

Query Use Cases: W3C Working Draft 08 June 2001. World Wide Web Consortium, 20
December 2001 [cited 17 August 2001]. http://www.w3.org/TR/xmlquery-use-cases.

Chawathe, S., H. Garca-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and J.

Widom. 1994. The TSIMMIS project: Integration of heterogeneous information sources.
Information Processing Scoiety of Japan, October, in Tokyo, Japan.

Chawathe, Sudarshan S., Serge Abiteboul, and Jennifer Widom. 1999. Managing Historical

Semistructured Data. Theory and Practice of Object Systems 24 (4):1, 1999.

Clark, James, and Steve DeRose. 2001. XML Path Language (XPath) Version 1.0: W3C

Recommendation 16 November 1999 [cited 17 August 2001].
http://www.w3c.org/TR/1999/REC-xpath-19991116.

Coase, Ronald. 1988. The Nature of the Firm (1937). In The Firm, the Market, and the Law.

Chicago, IL: University of Chicago Press.

Cohen, Julie E. 1997. Some reflections on copyright management systems and laws designed to

protect them. Berkeley Technology Law Journal 12 (1),
http://www.law.berkeley.edu/journals/btlj/articles/12_1/Cohen/html/text.html.

Constant, Beth A. 2000. Chalk Talk: The Fair Use Doctrine: Just What Is Fair? Journal of

Law and Education 29:385, July.

 139

Corlin, Richard F. 1998. H.R. 2652 Statement of the American Medical Association. Before

Subcommittee on Courts and Intellectual Property of the Committee on the Judiciary, US
House of Representatives, Washington, DC. 12 February.
http://www.house.gov/judiciary/41146.htm.

Cronk, Denis R. 2000. Tighter Protection Against Piracy of Online Data: Top NAR Legislative

Priority. National Association of Realtors, 6 January 2000 [cited 30 November 2000].
http://nar.realtor.com/news/2000Releases/January/6.htm.

Cui, Claire Yingwei, and Jennifer Widom. 2000. Practical Lineage Tracing in Data

Warehouses. International Conference on Data Engineering, February, in San Diego,
California, http://www-db.stanford.edu/pub/papers/trace.ps.

Cui, Claire Yingwei, and Jennifer Widom. 2001. Lineage Tracing for General Data Warehouse

Transformations. 27th International Conference on Very Large Data Bases (VLDB), 11-14
September, in Rome, Italy, http://dbpubs.stanford.edu:8090/pub/2001-5.

Cui, Claire Yingwei, Jennifer Widom, and Janet L. Wiener. 1997 (revised 1999). Tracing the

Lineage of View Data in a Datawarehousing Environment. Stanford University,
http://www-db.stanford.edu/pub/papers/lineage-full.ps.

databasedata.org. 1999. A Basic Guide to Database Legislation in the 106th Congress.

databasedata.org, http://www.databasedata.org/db101/db101.html.

databasedata.org. 1999. Side-By-Side Comparison of Database Protection Bills.

databasedata.org, http://www.databasedata.org/DBside-by-side.

deBakker, Bas, and Irsan Widarto. 2001. An Introduction to XQuery. X-Hive Corporation, 13

December [cited 13 December 2001]. http://www.perfectxml.com/articles/xml/xquery.asp.

Desai, B. C., P. Goya, and F. Sadri. 1987. Non-first normal form universal relations: an

application to information retrieval systems. Information Systems 12 (1):49-55, 1987.

Dey, Debabrata, Terence Barron, M., and Veda C. Storey. 1996. A complete temporal

relational algebra. VLDB Journal 5:167-180.

Dey, Debabrata, and Sumit Sarkar. 1996. A Probabilistic Relational Model and Algebra. ACM

Transactions on Database Systems 21 (3):339-369, September.

Djavaherian, David. 1998. Hot News and No Cold Facts: NBA v. Motorola and the Protection

of Database Contents. Richmond Journal of Law and Technology 5 (2), Winter,
http://www.richmond.edu/~jolt/v5i2/djava.html.

140

DOS, Department of State Bureau of Administration. 2001. Key Officers List, Japan. U.S.

Department of State, 18 October 2001 [cited 2001].
http://www.foia.state.gov/mms/KOH/keypostdetails.asp?post=0&letter=J&id=75.

Drahos, Peter. 1996. A philosophy of intellectual property. Brookfield, Vermont: Dartmouth

Publishing Company.

Duncan, Daniel C. 1999. H.R. 354 Testimony on behalf of the Software and Information

Industry Association. Before Subcommittee on Courts and Intellectual Property of the
Committee on the Judiciary, US House of Representatives, Washington, DC. 18 March
1999. http://www.house.gov/judiciary/106-dunc.htm.

Duschka, Oliver, and Michael Genesereth. 1997. Answering recursive queries using views.

Sixteenth ACM Symposium on Principles of Database Systems (PODS), 13-15 May, in
Tucson, AZ.

Duschka, Oliver M. , and Michael R. Genesereth. 1997. Query Planning in Infomaster. ACM

Symposium on Applied Computing, February, in San Jose, CA.

eBay. 2000. eBay, Inc.v. Bidder's Edge Inc., U.S. District Court for the Northern District of

California:LEXIS 13326 (21 July).

Effross, Walter A. 1998. Withdrawl of the reference: rights, rules, and remedies for

unwelcomed Web-linking. South Carolina Law Review 49:651-593,
http://www.wcl.american.edu/pub/faculty/effross/withdrawl.html.

Elgison, Martin, and James M. Jordan. 1997. Trademark cases arise from meta-tags, frames:

disputes involve search-engine indexes, web sites within web sites, as well as hyperlinking.
National Law Journal, 20 October,
http://cyber.law.harvard.edu/metaschool/fisher/linking/framing/mixed1.html.

Elkin-Koren, Niva. 1997. Copyright policy and the limits of freedom of contract. Berkeley

Technology Law Journal 12 (1), http://www.law.berkeley.edu/journals/btlj/articles/12-
1/koren.html.

Feist v. Rural. 1991. Feist Publications, Inc. v. Rural Telephone Service, U. S. Supreme Court

499:340 (1991).

Ferber, Don. 1991. Tracking Tiger: The use, verifcation, and updating of tiger data. GIS/LIS,

1991, in Atlanta, Georgia, pp 230-239.

Ferber, Don. 1992. GIS project documentation: The Wisconsin TIGER Project example.

GIS/LIS (1992), 10-12 November, in San Jose, California, pp 221-230.

 141

Fernandez, M., D. Florescu, J. Kang, A. Levy, and D. Suciu. 1997. Strudel: A web site

management system. ACM SIGMOD Conference on Management of Data, 13-15 May, in
Tucson, AZ.

Fernandez, M., D. Florescu, A. Levy, and D. Suciu. 1997. A query language for a web-site

management system. SIGMOD Record 26 (3):4-11, September.

Fernandez, Mary, and Jonathan Marsh. 2001. XQuery 1.0 and XPath 2.0 Data Model: W3C

Working Draft 7 June 2001. World Wide Web Consortium, 20 December [cited 7 July
2001]. http://www.w3.org/TR/2001/WD-query-datamodel-20010607/.

Fernandez, Mary, and Jonathan Robie. 2001. XML Query Data Model: W3C Working Draft 11

May 2000. World Wide Web Consortium [cited 7 July 2001].
http://www.w3.org/TR/2000/WD-query-datamodel-20000511.

Ferri, Lisa M., and Robert G. Gibbons. 2000. Forgive Us Our Virtual Trespasses: The 'eBay'

Ruling. New York Law Journal:1, 27 June 2000.

Firat, A., S. Madnick, and M. Siegel. 2000. The Cameleon Web Wrapper Engine. VLDB

Workshop on Technologies for E-Services, in Cairo, Egypt.

Florescu, Daniela, Alon Y. Levy, and Alberto Mendelzon. 1998. Databse Techniques for the

World-Wide-Web: A Survey. SIGMOD Record 1998.

Fry, Jason. 2001. Why Shopper's Loyalty To Familiar Web Sites Isn't So Crazy After All. Wall

Street Journal, 13 August, Sec Marketplace, p B1.

Fujita, Anne K. 1996. The Great Internet Panic: How Digitization is Deforming Copyright

Law. Journal of Technology Law & Policy 2 (1),
http://journal.law.ufl.edu/~techlaw/2/fall96index.html.

Gale Research, Inc. 1999. Gale Directory of Databases. Detroit, MI: Gale Research, Inc.

Garland, Susan. 1999. Whose Info Is It Anyway? Business Week, 13 September, 114.

Gibbons, Robert. 1992. Game Theory for Applied Economists. Princeton, NJ: Princeton

University Press.

Ginsburg, Jane C. 1990. Creation and Commercial Value: Copyright Protection of Works of

Information. Columbia Law Review 90:1865, November.

Ginsburg, Jane C. 1992. No "Sweat"? Copyright and Other Protection of Works of Information

142

After Feist v. Rural Telephone. Columbia Law Review 92:338, March.

Ginsburg, Jane C. 1997. Statement on H.R. 2652: The Collections of Information Antipiracy

Act. Before Subcommittee on Courts, Intellectual Property and the Administration of
Justice, U.S. House of Representatives. 28 October 1997.
http://www.house.gov/judiciary/41147.htm.

Goh, Cheng Hian. 1997. Representing and reasoning about semantic conflicts in heterogeneous

information systems. Doctor of Philosophy, Sloan School of Management, Massachusetts
Institute of Technology, Cambridge, Massachusetts.

Goh, Cheng Hian, S Bressan, S Madnick, and M Siegel. 1999. Context Interchange: New

Features and Formalisms for the Intelligent Integration of Information. ACM Transactions
on Office Information Systems, July.

Goldstein, Paul. 1994. Toward a Third Intellectual Property Paradigm: Comments: Comments

on a Manifesto Concerning the Legal Protection of Computer Programs. Columbia Law
Review 94:2573, December.

Gordon, Wendy J. 1992. On Owning Information: Intellectual Property and the Restitutionary

Impulse. Virginia Law Review 78:149, February.

Gordon, Wendy J. 1992. Asymmetric Market Failure and Prisoner's Dilemma in Intellectual

Property. University of Dayton Law Review 17:853, Spring.

Gordon, Wendy J. 1994. Toward a Third Intellectual Property Paradigm: Comments:

Assertive Modesty: An Economics of Intangibles. Columbia Law Review 94:2579,
December.

Gorman, Robert A., and Jane C. Ginsburg. 1993. Copyright for the Nineties. Fourth ed.

Charlottesville, VA: Michie Company.

Grady, Richard K. 1988. Data lineage in land and geographic information systems (LIS/GIS).

GIS/LIS (88), 30 November - 2 December, in San Antonio, Texas.

Green, Robert. 2000. eBay Revisited. the Synthesis, 1 July [cited 3 December 2000].

http://www.synthesis.net/columns/websight/07/01.

Grimm, Brothers. 2000. Grimm's Fairy Tales "Hansel and Gretel" [Web]. Mordent Software

[cited 30 June 2000 2000]. http://www.mordent.com/folktales/grimms/hng/hng.html.

Grimm, Brothers, Josef Scharl Scharl, Jacob Ludwig Carl Grimm, and Wilhelm Grimm. 1976.

The Complete Grimm's Fairy Tales (Pantheon Fairy Tale and Folklore Library) Edited by

 143

J. Stern: Random House.

Grosso, Paul, and Norman Walsh. 2000. XSL Concepts and Practical Use. XML Europe 2000,

12 June, in Paris, France, http://www.nwalsh.com/docs/tutorials/xsl/xsl/slides.html.

Guelich, Scott, Shishir Gundavaram, and Gunther Birznieks. 2000. CGI Programming with

Perl. 2nd ed. Sebastopol, CA: O'Reilly & Associates, Inc.

H.R. 354. 1999. Collections of Information Antipiracy Act. R. H. Coble:To amend title 17,

United States Code, to provide protection for certain collections of information., U.S.
House of Representatives, 106th Congress, 19 January.

H.R.1858. 1999. Consumer and Investor Access to Information Act of 1999. R. T. Bliley:To

promote electronic commerce through improved access for consumers to electronic
databases, including securities market information databases., U.S. House of
Representatives, 106th Congress, 19 May 1999.

H.R. 2652. 1997. Collections of Information Antipiracy Act. R. H. Coble:To amend title 17,

United States Code, to prevent the misappropriation of collections of information., U.S.
House of Representatives, 105th Congress, 9 October.

H.R. 3531. 1996. Database Investment and Intellectual Property Antipiracy Act of 1996. R. C.

J. Moorehead:To amend title 15, United States Code, to promote investment and prevent
intellectual property piracy with respect to databases., U.S. House of Representatives, 104th
Congress, 23 May.

Hammack, William. 1998. H.R. 2652 Testimony on behalf of the Association of Directory

Publishers. Before Subcommittee on Courts and Intellectual Property of the Committee on
the Judiciary, US House of Representatives, Washington, DC. 12 February.
http://www.house.gov/judiciary/41146.htm.

Hardy, Trotter. 1995. Contracts, Copyright, and Premeption in a Digital World. Richmond

Journal of Law and Technology 1 (2), http://www.urich.edu/olt/v1i1/hardy.html.

Hardy, Trotter. 1996. Property (and Copyright) in Cyberspace. The University of Chicago

Legal Forum:217.

Hawkins, Jennifer L. 1997. ProCD, Inc. v. Zeidenberg: Enforceability of shrinkwrap licenses

under the Copyright Act. Richmond Journal of Law and Technology 3 (1),
http://www.richmond.edu/~jolt/v3il/hawkins.html.

Henderson, Lynn O. 1999. H.R. 354 Testimony on behalf of Agricultural Publisher's

Association. Before Subcommittee on Courts and Intellectual Property of the Committee on

144

the Judiciary, US House of Representatives, Washington, DC. 18 March 1999.
http://www.house.gov/judiciary/106-hend.htm.

Hitchcock, Steve, L. Carr, S. Harris, J. Hey, and W. Hall. 1997. Citation linking: Improving

access to online journals. 2nd ACM International Conference on Digital Libraries, 23-26
July, in Philadelphia, PA, pp 115-122, http://journals.ecs.soton.ac.uk/acmdl97.htm.

Horbaczewski, Henry. 1999. On behalf of the Coalition Against Database Piracy on H.R. 1858,

the Consumer and Investor Accessto Information Act of 1999. Before Subcommittee on
Telecommunications, Trade and Consumer Protection of the House Commerce Committee,
US House of Representatives, Washington, DC. 15 June 1999.
http://www.gooddata.org/Horbaczewski_testimony.htm.

hotelguide.com. 2001. Hotelguide.com - Book your accomodation online from our

International Hotel Directory. hotelguide.com [cited 20 August 2001].
http://www.hotelguide.com.

Howe, Dennis, ed. 2000. Free On-line Dictionary of Computing: Imperial College Department

of Computing.

Hu, Jim. 2000. MP3.com pays $53.4 million to end copyright suit. CNET News.com, 15

November, 11:20 am PT [cited 3 December 2000]. http://news.cnet.com/news/0-1005-202-
3681102.html.

Huang, Kuan-Tsae, Yang W. Lee, and Richard Y. Wang. 1999. Quality Information and

Knowledge. Upper Saddle River, NJ: Prentice Hall PTR.

Hunsucker, G.M. 1997. The European Database Directive: Regional stepping stone to an

international model? Fordham Intellectual Property, Media and Entertainment Law
Journal 7.

IFLA, International Federation of Library Associations. 2002. Committee on Copyright and

other Legal Matters. IFLA, 22 November 2001 [cited September 2001].
http://www.ifla.org/III/clm/copyr.htm.

INS v. AP. 1918. International News Service v. Associated Press, U.S. Supreme Court 248:215

(1918).

Japan Youth Hostels, Inc. 2001. Tokyo, Japan Youth Hostels. Hostelling International [cited 20

August 2001]. http://www.jyh.or.jp/olhb/JYH-English/jyh.kantou/jyh-7.13.html.

Junnarkar, Sandeep. 1999. Ticketmaster Online-CitySearch buys Sidewalk. CNET News.com,

19 July 1999, 12:20 PT, http://www.canada.cnet.com/news/0-1005-200-345004.html.

 145

Kaplan, Carl S. 1999. A search site for search sites is accused of trespassing. New York Times,

24 September 1999,
http://www.nytimes.com/library/tech/99/09/cyber/cyberlaw/24law.html.

Kaplan, Carl S. 2000. Judge says a spider is trespassing on eBay. New York Times, 26 May,

http://www.nytimes.com/library/tech/00/05/cyber/cyberlaw/26law.html.

Karjala, Dennis S. 1994. Toward a Third Intellectual Property Paradigm: Comments:

Misappropriation as a Third Intellectual Property Paradigm. Columbia Law Review
94:2594, December.

Katz, Howard. 2001. An introduction to XQuery. IBM developer works XML zone articles,

June [cited 13 December 2001]. http://www-106.ibm.com/developerworks/xml/library/x-
xqury.html.

Kinko's. 1991. Basic Books, Inc., Harper & Row Publishers, Inc., John Wiley & Sons, Inc.,

McGraw-Hill, Inc., Penguin Books USA, Inc, Prentice-Hall, Inc., Richard D. Irwin, Inc.,
and William Morrow & Co., Inc., v. Kinko's Graphics Corporation, United States District
Court for the Southern District of New York 758:1522 (28 March).

Kirkman, Catherine Sansum. 1998. Legal Protection of Online Databases. WebTechniques

[cited 2 July 2000]. http://www.webtechniques.com/archives/1998/01/just/.

Kleinberg, Jon. 1998. Authoritative sources in a hyper-linked environment. Proceedings, 9th

ACM-SIAM Symposium on Discrete Algorithms,
http://www.cs.cornell.edu/home/kleinber/auth.pdf.

Klug, A. 1988. On Conjunctive Queries Containing Inequalities. Journal of the Association for

Computing Machinery 35 (1):146-160.

Konopnicki, D., and O. Shmueli. 1995. W3QS: A query system for the World Wide Web. 21st

International Conference on Very Large Data Bases (VLDB), 11-15 September, in Zurich,
Switzerland, pp 54-65.

Kravitz, Mark. 2001. $18 and Under: The Guide to Reasonable Dining and Entertainment.

Third ed. Philadelphia, PA: Spirit of `76 Publishing.

Krebs, Brian. 2000. Law profs oppose Court's ban on eBay spidering. eMarketer, 3 December,

http://www.emarketer.com/enews/20000719_spidering.html.

Krummenacker, Markus. 1995. Are "Intellectual Property Rights" Justified? [Web] [cited 11

July 2001].

146

Kuester, Jeffrey R., and Peter A. Nieves. 1997. What's all the hype about hyperlinking?

Thomas, Kayden, Horstemeyer & Risley, L.L.P., http://www.tkhr.com/articles/hyper.html.

Langin, Dan, and James Cary Howell. 2000. ISP Risk Management. Boardwatch Magazine,

August, 82-6.

Lanter, David P. 1991. Design of a lineage-based meta-data base for GIS. Cartography and

Geographic Information Systems 18 (4):255-261.

Lanter, David P., and Chris Surbey. 1994. Metadata analysis of GIS data processing, a case

study. International Symposium on Spatial Data Handling (6th), 1994, in Edinburgh,
Scotland, pp 314-324.

Lasswell, Harold. 1948. The Structure and Function of Communication in Society. In The

Communication of Ideas, A Series of Addresses, edited by L. Bryson. New York, NY:
Institute for Religious and Social Studies, distributed by Harper.

Lederberg, Joshua. 1999. H.R. 354 Testimony on behalf of the National Academy of Sciences,

National Academy of Engineering, Institute of Medicine, and the American Association for
the Advancement of Science. Before Subcommittee on Courts and Intellectual Property of
the Committee on the Judiciary, US House of Representatives, Washington, DC. 18 March
1999. http://www.house.gov/judiciary/106-pinc.htm.

Lee, T., and S. Bressan. 1997. Multimodal Integration of Disparate Information Sources with

Attribution. ER 97 Workshop on Information Retrieval and Conceptual Modeling,
November, in Los Angeles, CA.

Lee, T., S. Bressan, and S. Madnick. 1997. Source Attribution for Querying Against Semi-

structured Documents. MIT Sloan School of Management, Sloan WP#4042 CISL WP#99-
01.

Lee, T., S. Bressan, and S. Madnick. 1998. Source Attribution for Querying Against Semi-

stuctured Documents. Workshop on Web Information and Data Management, Seventh
International ACM Conference on Information and Knowledge Management, 3-7
November, in Bethesda, MD.

Lee, T., M. Chams, R. Nado, S. Madnick, and M. Siegel. 1999. Information Integration with

Attribution Support for Corporate Profiles. Eighth International ACM Conference on
Information and Knowledge Management (CIKM), 2-6 November, in Kansas City, KS, pp
423-430.

Lenz, Evan. 2001. XQuery: Reinventing the Wheel? XYZFind Corp. [cited 13 December

 147

2001]. http://xmlportfolio.com/xquery.html.

Let's Go, Inc. 1993. Let's Go: Germany, Austria & Switzerland Edited by G. W. Rodkey. New

York, NY: St. Martin's Press.

Levy, Alon Y. 2000. Logic-Based Techniques in Data Integration. In Logic Based Artificial

Intelligence, edited by J. Minker: Kluwer Publishers.

Levy, Alon Y., Anand Rajaraman, and Joann J. Ordille. 1996. Querying Heterogeneous

Information Sources Using Source Descriptions. 22nd International Conference on Very
Large Data Bases (VLDB), 3-6 September, in Bombay, India.

Lindemans, Micha F. 2000. The Encyclopedia Mythica [cited 6/30/2000 2000].

http://www.pantheon.org/mythica/areas/greek.

Linn, Anne. 2000. History of Database Protection: Legal Issues of Concern to the Scientific

Community. National Research Council, 3 March 2000 [cited 2 July 2000].
http://www.codata.org/codata/data_access/linn.html.

Litman, Jessica. 1992. After Feist. University of Dayton Law Review 17.

Liu, H. C., and K Ramamohanarao. 1994. Algebraic equivalences among nested relational

expressions. The University of Melbourne, Technical Report 94/4,
http://http://www.cs.mu.oz.au/publications/tr_db/mu_94_04.ps.gz.

Liu, Joseph P. 2001. Owning digital copies: Copyright law and the incidents of copy

ownership. William and Mary Law Review 42:1245-1366, April, 2001.

Lutzker, Arnold P. 1999. Primer on the Digital Millennium. Lutzker and Lutzker, LLP,

Washington, D.C., 5 February 1999 [cited June 2000].
http://www.arl.org/info/frn/copy/primer.html.

MacMillan, Robert. 2000. Sen. DeWine calls for database bill next year. Newsbytes, 26

October, 10:06 AM EST, http:////www.newsbytes.com/news/00/157254.html.

Mahoney, Paul G. 1997. Technology, Property Rights in Information, and Securities

Regulation. Washington University Law Quarterly 75 (2):815, Summer.

Maier, David. 1983. The theory of relational databases. Rockville, Maryland: Computer

Science Press.

Marino, Fabio. 2000. Database Protection in the European Union [cited 2 July 2000].

http://www.jus.unitn.it/cardozo/Review/Students/Marino1.html.

148

Markon, Jerry. 2001. E-Business: The Web @ Work/Willkie Farr & Gallagher. Wall Street

Journal, 30 April, Sec E-Business, p B5.

McDermott, Terry. 1999. H.R. 354 Testimony on behalf of National Association of Realtors.

Before Subcommittee on Courts and Intellectual Property of the Committee on the
Judiciary, US House of Representatives, Washington, DC. 18 March 1999.
http://www.house.gov/judiciary/106-mcde.htm.

McHugh, J., S. Abiteboul, R. Goldman, D. Quass, and J. Widom. 1997. Lore: A database

management system for semistructured data. ACM SIGMOD Record 26 (3):54-66, 1997.

Mendelzon, Alberto, George A. Mihaila, and Tova Milo. 1996. Querying the World Wide Web.

Fourth International Conference on Parallel and Distributed Information Systems (PDIS),
18-20 December, in Miami, FL, pp 80-91.

Mendelzon, Alberto, and Tova Milo. 1997. Formal models of Web queries. Sixteenth ACM

Symposium on Principles of Database Systems (PODS), 13-15 May, in Tucson, AZ, pp
134-143.

Merges, Robert P. 1994. Toward a Third Intellectual Property Paradigm: Comments: Of

Property Rules, Coase, and Intellectual Property. Columbia Law Review 94:2655,
December.

Merges, Robert P. 1996. Contracting into Liability Rules: Intellectual Property Rights and

Collective Rights Organizations. California Law Review 84 (5):1293, October,
http://www.sims.berkeley.edu/BCLT/pubs/merges/contract.htm.

Merges, Robert P., Peter S. Menell, Mark A. Lemley, and Thomas M. Jorde. 1997. Intellectual

Property in the New Technological Age. New York: Aspen Law & Business, Aspen
Publishers, Inc.

Mihaila, George A., Louiqa Raschid, and Maria Esther Vidal. 1999. Querying "Quality of data"

metadata. IEEE Metadata, 1999,
http://www.computer.org/conferen/proceed/meta/1999/papers/65/gmihaila.html.

Milgrom, Paul, and John Roberts. 1992. Economics, Organization and Management.

Englewood Cliffs, NJ: Prentice Hall.

Minker, Jack, ed. 1988. Foundations of Deductive Databases and Logic Programming. Los

Altos: Morgan Kaufmann Publishers, Inc.

Monster.com. 2000. Monster.com Joins Coalition Against Database Piracy, 26 September

 149

2000 [cited 30 November 2000]. http://www.gooddata.org/monster.htm.

Motro, Amihai. 1996. Panorama: a database system that annotates its answers to queries with

their properties. Journal of Intelligent Information Systems 7 (1):51-73.

Motro, Amihai, and Igor Rakov. 1998. Estimating the quality of databases. Flexible Query

Answering Systems. Third International Conference, FQAS'98. Proceedings, 13-15 May, in
Roskilde, Denmark, pp 298-307.

MP3.com. 2000. UMG Recordings, Inc. v. MP3.com, Inc., United States District Court for the

Southern District of New York:LEXIS 13293 (6 September).

Nazareth, Annette L. 1999. Prepared statement on behalf of the Securites and Exchange

Commission concerning H.R. 1858. Before Subcommittee on Finance and Hazardous
Materials, U.S. House of Representatives, Washington, D.C. 30 June 1999.

NBA v. Motorola. 1997. National Basketball Association v. Motorola, Inc., 2nd Cricuit

105:841.

NCID, National Center for Infectious Diseases. 2001. Travelers' Health: Health Information

for Travelers to East Asia. U.S. Department of Health and Human Services, Centers for
Disease Control (CDC), http://www.cdc.gov/travel/eastasia.htm.

Neal, James G. 1999. H.R. 354 Testimony on behalf of American Association of Law

Libraries, American Library Association, Association of Research Libraries, Medical
Library Association, and Special Libraries Association. Before Subcommittee on Courts
and Intellectual Property of the Committee on the Judiciary, US House of Representatives,
Washington, DC. 18 March. http://www.house.gov/judiciary/106-neal.htm.

Nestorov, S., S. Abietboul, and R. Motwani. 1997. Inferring structure in semistructured data.

Workshop on Management of Semistructured Data in Conjunction with ACM SIGMOD, 13-
15 May, in Tucson, AZ.

NFL v. Delaware. 1977. National Football League v. State of Delaware, F. Supp. 435:1372.

Nicolas, Jean-Marie. 1982. Logic for Improving Integrity Checking in Relational Data Bases.

Acta Informatica 18:227-53.

Nimmer, Raymond T. 1998. Breaking Barriers: The Relation Between Contract and

Intellectual Property Law. Berkeley Technology Law Journal 13:827, Fall.

Nissen, Dinah, and Jamie Barber. 1996. The EC Database Directive. In-House Lawyer, May,

http://www.harbottle.co.uk/pubs/may96.htm.

150

Nottrott, Rudolf W., Matthew B. Jones, and Mark Schildhauer. 1999. Using XML-structured

metadata to automate quality assurance processing for ecological data. IEEE Metadata,
http://www.computer.org/conferen/proceed/meta/1999/papers/64/rnottrott.html.

NRC, National Research Council. 1997. Bits of Power: Issues in Global Access to Scientific

Data. Computer Science and Telecommunications Board, Computer Science and
Telecommunications Board. Washington, DC: National Academy Press.

NRC, National Research Council. 1997. For the Record: Protecting Electronic Health

Information. Computer Science and Telecommunications Board, Computer Science and
Telecommunications Board. Washington, DC: National Academy Press.

NRC, National Research Council. 1999. A Question of Balance: Private Rights and Public

Interest in Scientific and Technical Databases. Commission on Physical Sciences,
Mathematics, and Applications, Commission on Physical Sciences, Mathematics, and
Applications. Washington, DC: National Academy Press.

NRC, National Research Council. 2000. The Digital Dilemma: Intellectual Property in the

Information Age. Engineering and Physical Sciences, Engineering and Physical Sciences.
Washington, DC: National Academy Press.

Olsen, Stefanie. 1999. eBay inks deal with auction search site. CNET News.com, 1 December

1999 2:40 pm PST [cited 3 December 2000]. http://news.cnet.com/news/0-2007-300-
1475546.html.

OMM, O'Melveney & Meyers LLP. 1999. Copyright Law and the Internet. O'Melveney &

Meyers LLP, 19 November 1998 [cited 16 April 1999].
http://www.omm.com/ilpg/ip/copyright.html.

O'Rourke, Maureen A. 1997. Copyright Preemption After the ProCD Case: A Market-Based

Approach. Berkeley Technology Law Journal 12 (1),
http://www.law.berkeley.edu/journals/btlj/articles/12-1/ORourke.html.

O'Rourke, Maureen A. 1999. Progressing Towards a Uniform Commercial Code for Electronic

Commerce or Racing Towards Nonuniformity? Berkeley Technology Law Journal 14 (2),
http://www.law.berkeley.edu/journals/btlj/articles/14_2/O'Rourke/html/reader.html.

OSTP, Office of Science and Technology Policy. 1999. Administration testimony on HR 354.

Before Subcommittee on Courts and Intellectual Property of the Committee on the
Judiciary, US House of Representatives, Washington, DC. 18 March 1999.
http://www.whitehouse.gov/WH/EOP/OSTP/html/19993_19_2.html.

 151

Paepke, C. Owen. 1987. An Economic Interpretation of the Misappropration Doctrine:

Common Law Protection for Investments in Innovation. High Technology Law Journal.

Papakonstantinou, Y., S. Abiteboul, and H. Garca-Molina. 1996. Object fusion in mediator

systems. 22nd International Conference on Very Large Data Bases (VLDB), 3-6
September, in Bombay, India.

Papakonstantinou, Y., H. Garca-Molina, and J. Widom. 1995. Object exchange across

heterogeneous information sources. International Conference on Data Engineering, in
Taipei, Taiwan, pp 251-260.

Patterson, L. Ray. 1992. Copyright Overextended: A Preliminary Inquiry Into the Need for a

Federal Statute of Unfair Competition. Dayton Law Review 17:385, Winter.

Perritt, Henry H. Jr. 1996. Property and Innovation in the Global Information Infrastructure.

The University of Chicago Legal Forum:261.

Peters, Marybeth. 1999. H.R. 354 Testimony for the U.S. Copyright Office. Before

Subcommittee on Courts and Intellectual Property of the Committee on the Judiciary, US
House of Representatives, Washington, DC. 18 March 1999.
http://www.house.gov/judiciary/106-pete.htm.

Phelps, Charles E. 1999. H.R. 354 Testimony on behalf of the Association of American

Universities, the American Council of Education, and the National Association of State
Universities and Land-Grant Colleges. Before Subcommittee on Courts and Intellectual
Property of the Committee on the Judiciary, US House of Representatives, Washington,
DC. 18 March 1999. http://www.house.gov/judiciary/106-phel.htm.

Pincus, Andrew J. 1999. H.R. 354 Testimony for the U. S. Department of Commerce. Before

Subcommittee on Courts and Intellectual Property of the Committee on the Judiciary, US
House of Representatives, Washington, DC. 18 March 1999.
http://www.house.gov/judiciary/106-pinc.htm.

Pindyck, Robert S., and Daniel L. Rubinfeld. 1992. Microeconomics. Second ed. New York,

NY: Macmillan Publishing Co.

Planet, Lonely. 2001. Worldguide, Destination: Tokyo. Lonely Planet [cited 20 August 2001].

http://www.lonelyplanet.com/destinations/north_east_asia/tokyo/attractions.htm.

Pollack, Malla. 1999. The Right to Know?: Delimiting Database Protection at the Juncture of

the Commerce Clause, the Intellectual Property Clause, and the First Amendment. Cardozo
Arts & Entertainment Law Journal 17.

152

Posner, Richard A. 1992. Economic Analysis of Law. 4th ed. Boston, MA: Little, Brown.

Princeton v. MDS. 1992. Princeton University Press, Macmillan, Inc. and St. Martin's Press,

Inc. v. Michigan Document Services, Inc. and James M. Smith, U. S. District Court for the
Eastern District of Michigan, Southern Division 1992:13257 (2 April).

Princeton v. MDS. 1996. Princeton University Press, Macmillan, Inc. and St. Martin's Press,

Inc. v. Michigan Document Services, Inc. and James M. Smith, United States Court of
Appeals for the Sixth Circuit 99:1381 (8 November).

ProCD v. Zeidenberg. 1996. ProCD v. Zeidenberg, 7th Circuit 908:640.

Quass, D., A. Rajaraman, Y Sagiv, J. Ullman, and J. Widom. 1995. Querying semistructured

heterogeneous information. Fourth International Conferenc on Deductive and Object-
Oriented Databases, in Singapore, pp 436-445.

Quass, D., J. Widom, R. Goldman, K. Haas, Q. Luo, J. McHugh, S. Nestorov, A. Rajaraman,

H. Rivero, S. Abiteboul, J. Ullman, and J. Wiener. 1996. LORE: A Lightweight Object
REpository for semistructured data. ACM SIGMOD International Conference on
Management of Data, June, in Montreal, Canada.

Raggett, Dave. 2000. Adding a touch of style. W3C, 29 August 2000 [cited 23 October 2001].

http://www.w3.org/MarkUp/Guide/Style.

Raggett, Dave. 2001. Getting started with HTML. W3C, 4 June 2001 [cited December 2000].

http://www.w3.org/MarkUp/Guide/.

Ramakrishnan, Raghu, and Johannes Gehrke. 2000. Database Management Systems. 2nd ed.

Boston, MA: McGraw-Hill.

Raskind, Leo J. 1991. The Misappropriation Doctrine as a Competitive Norm of Intellectual

Property Law. Minnesota Law Review 75:875, February.

Raul, Alan Charles, Edward R. McNicholas, and Claudia A. von Pervieux. 2000. Who Owns

the Data? Evolving Protections for Facts, Secrets and Personal Information in Cyberspace
[Web]. Washington, D.C. Office of Sidley & Austin, April 2000 [cited 11 December 2000].
http://www.sidley.com/cyberlaw/features/protect.asp.

Reichman, J.H., and Pamela Samuelson. 1997. Intellectual property rights in data? Vanderbilt

Law Review 50, January.

Reichman, J. H., and Paul F. Uhlir. 1999. Database protection at the crossroads: Recent

developments and their impact on science and technology. Berkeley Technology Law

 153

Journal 14 (2),
http://www.law.berkeley.edu/journals/btlj/articles/14_2/Reichman/html/reader.html.

RIAA. 2000. MP3.com Lawsuit Q&A. Recording Industry Association of America [cited 3

December 2000]. http://www.riaa.com/MP3lawsuit.cfm.

Rob, Peter, and Carlos Coronel. 1997. Databsae Systems: Design, Implementation, and

Management. Cambridge, MA: Course Technology, International Thomson Publishing.

Rosenbaum, David E. 2000. Database Legislation Spurs Fierce Lobbying. New York Times, 5

June, Sec A, p 14, http://www.gooddata.org/NYT.htm.

Rosenthal, A., and E. Sciore. 1999. Security administration for federations, warehouses, and

other derived data. IFIP WG11.3 Conference on Database Security,
http://www.cs.bc.edu/~sciore/papers/IFIP99.pdf.

Rosenthal, A., and E. Sciore. 1999. Administering propagated metadata in large, multi-layer

database systems. IEEE Workshop on Knowledge and Data Exchange, 7 November,
http://www.cs.bc.edu/~sciore/papers/KDEX99.pdf.

Roth, Mark A., Henry F. Korth, and Abraham Silberschatz. 1988. Extended Algebra and

Calculus for Nested Relational Databases. ACM Transactions on Database Systems 13
(4):389-417, December.

Rough Guides, Travel. 2001. Rough Guide Travel: Tokyo. Rough Guide Travel [cited 20

August 2001 2001]. http://travel.roughguides.com/content/10072/22912.htm.

S. 95. 1999. Trading Information Act. S. J. McCain:To amend the Communications Act of

1934 to ensure that public availability of information concerning stocks traded on an
established stock exchange continues to be freely and readily available to the public
through all media of mass communication., U.S. Senate, 106th Congress, 1st session, 19
January 1999.

S. 2291. 1998. Collections of Information Antipiracy Act. S. R. Grams:A bill to amend title 17,

United States Code, to prevent the misappropriation of collections of information, U.S.
Senate, 105th Congress, 10 July.

Sableman, Mark. 1999. Link Law: The emerging law of Internet hyperlinks. Communication

Law and Policy 4 (4):557-601, http://www.ldrc.com/cyber2.html.

Sadri, Fereidoon. 1991. Modeling uncertainty in databases. International Conference on Data

Engineering, 8-12 April, in Kobe, Japan, pp 122-131.

154

Sadri, Fereidoon. 1994. Aggregate operations in the information source tracking method.

Theoretical Computer Science 133 (2):421-442, 24 October.

Sadri, Fereidoon. 1995. Information source tracking method: efficiency issues. IEEE

Transactions on Knowledge and Data Engineering 7 (6):947-954, December.

Sagiv, Yehoshua, and Mihalis Yannakakis. 1980. Equivalences Among Relational Expresions

with the Union and Difference Operators. Journal of the Association for Computing
Machinery 27 (4):633-655, October.

Samuelson, Pamela. 1992. Copyright Law and Electronic Compilations of Data.

Communications of the ACM 35 (2), February.

Schek, H. -J., and P. Pistor. 1982. Data Structures for an Integrated Data Base Management and

Information Retrieval System. 8th International Conference on Very Large Data Bases, 8-
12 September 1982, in Mexico City, Mexico, pp 197-207.

Schek, H. -J., and M. H. Scholl. 1986. The Relational Model with Relation-Valued Attributes.

Information Systems 11 (2):137-147.

Scholl, M. H. 1992. Extensions to the relational data model. In Conceptual modelling,

databases, and CASE: An integrated view of information systems development, edited by
L. P. and R. Zicari. New York: Jon Wiley & Sons.

SEC, U.S. Securities and Exchange Commission. 1999. Special Study: On-Line Brokerage:

Keeping Apace of Cyberspace. U.S. Securities and Exchange Commission,
http://www.sec.gov/news/studies/cyberspace.htm.

Shapiro, Carl, and Hal R. Varian. 1999. Information Rules: A Strategic Guide to the Network

Economy. Boston, MA: Harvard Business School Press.

Shrager, Heidi J. 2001. E-Business: The Web @ Work/Zagat Survey. Wall Street Journal, 20

August 2001, Sec E-Business, p B6.

Sony v. Universal. 1984. Sony Corp. v. Universal City Studios, Inc., U. S. Supreme Court

464:417.

Spaulding, Michelle L. 1998. The doctrine of misappropriation [Web]. Harvard Law School,

21 March 1998 [cited December 1999].
http://cyber.law.harvard.edu/metaschool/fisher/linking/doctrine/.

staff. 2000. Federal judge says MP3.com willfully violated music copyrights, 6 September

2000, 2:53P EDT [cited 4 January 2001].

 155

http://www.cnn.com/2000/LAW/09/06/mp3.lawsuit.

Tabke, Brett. 1999. PriceMan Sued by MySimon [Web]. Saerch Engine World.com, 24

September 1999 [cited 11 December 2000 2000].
http://www.searchengineworld.com/news/lawsuit.htm.

Taylor, Chris, Peter Turner, Joe Cummings, and et al. 1997. South-East Asia on a shoestring.

Ninth ed. Melbourne, Australia: Lonely Planet Publications.

Terry, Andrew. 1988. Misappropriation of a Competitor's Trade Values. The Modern Law

Review 51:296, May.

Ticketmaster v. Microsoft. 1997. Ticketmaster Corp. v. Microsoft Corp., 97:3055PP (settled).

Total News. 1997. Washington Post Company v. Total News Inc., S. D. N. Y. 97:1190.

Transradio Press Service. 1937. Twentieth Century Sporting Club, Inc. v. Transradio Press

Service, New York Supreme Court 300:159.

Tsur, D., J. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, and A. Rosenthal.

1998. Query flocks: A generalization of association-rule mining. ACM SIGMOD
International Conference on Management of Data, June, in Seattle, WA, pp 1-12.

Tyson, L, and E Sherry. 1997. Statutory protection for databases: economic and public policy

issues. Information Industry Association.

Tzafestas, Elpida. 2000. Toward Adaptive Cooperative Behavior. Proceedings of the

Simulation of Adaptive Behavior Conference, September, in Paris, France.

U.S. v. Microsoft. 2001. United States of America v. Microsoft Corporation, U.S. Court of

Appeals for the District of Columbia Circuit 253:34 (28 June).

Ullman, Jeffrey D. 1988. Principles of database and knowledge-base systems, volume 1.

Principles of Computer Science, Edited by A. V. Aho and J. D. Ullman. 2 vols. Vol. 1,
Principles of Computer Science. Rockville, Maryland: Computer Science Press.

Ullman, Jeffrey D. 1989. Principles of database and knowledge-base systems, volume 2.

Principles of Computer Science, Edited by A. V. Aho and J. D. Ullman. 2 vols. Vol. 2,
Principles of Computer Science. Rockville, Maryland: Computer Science Press.

Ullman, Jeffrey D., and Jennifer Widom. 1997. A First Course in Database Systems. New

Jersey: Prentice-Hall, Inc.

156

Van de Sompel, Herbert, and Patrick Hochstenbach. 1999. Reference linking in a hyrid library

environment. D-Lib Magazine 5 (4),
http://www.dlib.org/dlib/april99/van_de_sompel/04vande_sompel-pt1.html.

Van Gelder, Allen, and Rodney Topor. 1991. Safety and Translation of Relational Calculus

Queries. ACM Transactions on Database Systems 16 (2):235-78, June.

Walsh, N. 1997. Introduction to XML. XML Journal 2 (4), Fall.

Wang, Richard, and Stuart Madnick. 1990. A Polygen Model for Heterogeneous Database

Systems: The Source Tagging Perspective. 16th International Conference on Very Large
Data Bases (VLDB), 13-16 August, in Brisbane, Australia.

Warren Publishing v. Microdos. 1997. Warren Publishing, Inc. v. Microsods Data Corp,

United States Court of Appeals, Eleventh Circuit 93:8474 (10 June).

Wiederhold, G. 1992. Mediators in the architecture of future information systems. IEEE

Computer 25 (3):38-49, March.

Winokur, Marilyn. 1999. H.R. 354 Testimony on behalf of Thomson Corporation and the

Coalition Against Database Piracy. Before Subcommittee on Courts and Intellectual
Property of the Committee on the Judiciary, US House of Representatives, Washington,
DC. 18 March 1999. http://www.house.gov/judiciary/106-wino.htm.

Wolverton, Troy. 2000. Judge bars Bidder's Edge Web crawler on eBay. CNET News.com, 25

May 2000, 12:30 PST [cited 3 December 2000]. http://news.cnet.com/news/0-1007-200-
1948171.html.

Wong, Stephanie. 1999. Estimated $4.35 billion in ecommerce sales at risk each year. Zona

Research, Inc., http://www.zonaresearch.com/info/press/99-jun30.htm.

Woodruff, Allison, and Michael Stonebraker. 1997. Supporting fine-grained data lineage in a

database visualization environment. Proceedings of the 13th International Conference on
Data Engineering, April, in Birmingham, England, pp 91-102.

Zuckerman, Gregory, and Rebecca Buckman. 1999. Data Providers Face Internet Challengers.

Wall Street Journal, 21 September, p C1.

	Introduction
	Related work
	Formal approaches
	Pragmatic approaches

	Attribution intuitions
	The meaning of attribution
	Properties of attribution
	Levels of attribution

	Formal model
	The domain relational calculus
	Syntax and notation
	A review of the calculus

	Attribution and the DRC
	Conjunctive queries
	Attribution concept
	Types of attribution
	Multiple derivations – the concept
	Multiple derivations from different expressions –
	Multiple derivations from different expressions, composition
	Multiple derivations within a single expression
	Granularity – the concept
	Source granularity
	Result granularity

	Adding theta comparisons
	Attribution concept
	Types of attribution
	Multiple derivations from different expressions, strict equivalence
	Multiple derivations from different expressions, composition

	Adding explicit equality
	Adding union
	Attribution concept
	Multiple derivations – strict equivalence
	Multiple derivations - composition

	Adding negation
	Attribution concept
	Types of attribution
	Attribution equivalence and composition

	Summary

	Extended algebra
	Algebra for attribution
	Basic definitions
	Extended algebra
	Extended relation
	Operations on extended relations
	Extended relational operators

	Properties of the algebra
	Closure of the extended algebra
	Relationship between the standard algebra and extended algebra
	Relationship between the extended algebra and the formal definition

	Summary

	Attribution and the Web
	Semistructured data models
	Semistructured data representation
	Semistructured data manipulation
	Data extraction
	Data presentation
	Extending data manipulation capabilities

	Attribution intuitions and semistructured data
	Challenges for attributing the Web
	Challenges attributing semistructured data
	Challenges attributing the Web

	Conclusion
	Contributions
	Limitations and future work

	References

