
A Smart City IoT Integrity-First Communication
Protocol via an Ethereum Blockchain Light Client

Elizabeth Reilly ∗, Matthew Maloney ∗, Michael Siegel ∗, Gregory Falco ∗
∗Massachusetts Institute of Technology

{reillye, maloneym, msiegel, gfalco}@mit.edu

Abstract—Smart city IoT is responsible for communicating
system-critical data about urban infrastructure that keeps our
modern cities functioning. Today, IoT devices lack commu-
nication protocols with data integrity as a priority. Without
data integrity, smart city infrastructure is at risk of actuating
urban environments on compromised data. Attackers can use
this IoT communication flaw to wage cyber-physical attacks
on Smart Cities. We designed and developed an integrity-first
communication protocol for IoT that is distributed and scalable
based on the Ethereum blockchain. Our light client ensures data
communication integrity for systems that require it most.

Keywords— IoT Security, Blockchain, Smart Cities, Com-
munication Integrity, Ethereum, IoT Communication Protocol

I. INTRODUCTION

Despite the prevalence and growing popularity of smart city
IoT devices such as smart meters or CCTV security cameras,
many of these devices lack security [9]. There are hundreds
of videos dedicated to demonstrating how to hack into IoT
devices in minutes [4]. The lack of communication standards
and various IoT device manufacturers further complicates the
security of these memory and processing power-constrained
devices [8]. Our research focuses on a specific security gap for
urban critical infrastructure IoT - improving communication
integrity. Prioritizing integrity, what we call integrity-first com-
munication, is important for smart city IoT because integrity
failures can result in cyber-physical damages.

Because many IoT devices have different operating systems
and configurations, it is hard to establish one single communi-
cation protocol that can be universally applied [6]. IoT devices
with limited memory and computational resources pose an
even greater concern as they often do not have the resources
to host a communication protocol at all [12].

Several IoT communication protocols have been proposed
that attempt to prioridize communication integrity, yet they are
not scalable [13].

Given the distributed nature of IoT devices and their scale,
a suitable integral communication protocol is needed. We
propose using the blockchain for this purpose. Blockchain
provides a scalable, distributed ledger that requires consensus
across all participating nodes [14]. Once a transaction has been
approved by the majority of nodes, it cannot be tampered with
or erased unless an attacker has control over 51% of the nodes.
Therefore, blockchain is a good candidate for IoT communi-
cation integrity, assuming the blockchain is sufficiently large.

However, hosting a blockchain node on IoT has been
problematic because each node in the network must store the

chain of transactions. Many IoT devices have memory and
computational limits which keep them from being able to store
entire chain data. Current solutions such as the tangle, IoT
chain, IoTex and NeuroMesh have tried to overcome this issue
by using lighter clients or hardware solutions [15][5][1][8].
However, each has limitations. We have designed a light
version of the Ethereum blockchain that overcomes these
outstanding issues. Our light client provides integrity-first
communication for IoT devices.

II. RELATED WORKS

Today, there is no industry standard for how IoT devices
should communicate securely. Many current communication
protocols for IoT devices either poorly address security, or
are not scalable. Researchers have only recently begun inves-
tigating blockchain as a potential IoT communication protocol.
However, most IoT blockchain implementations are either too
large, too centralized, too expensive or use hardware solutions.

A. Legacy Communication Protocols

Modbus was one of the original proposed communication
mechanisms for IoT devices [10]. Modbus was originally
designed for isolated systems so the integrity of messages was
not taken into consideration [10]. DNP3 is another early com-
munication protocol for IoT devices built upon TCP/IP. It has
a master-slave structure and likewise does not provide integrity
of messages and no authentication mechanism between master
and slave [10]. Both of these systems do not ensure integrity-
first communication and were designed for early industrial IoT.

B. Modern IoT Communication Protocols

IoT devices with limited resources are often referred to as
constrained nodes. Currently, DTLS is the default security
protocol used for application messages between constrained
nodes [2]. DTLS is built upon the UDP protocol [12].
However, DTLS lacks scalability. Similarly, the IETF has
attempted to create a standard for communication protocols for
constrained nodes. One such protocol is CoAP, which is also
built upon UDP and includes a subset of HTTP functions that
are optimized for resource scarce environments [16]. However,
similar to DTLS, this protocol does not perform well under
high load or congestion [16]. Also, UDP is known for being
unreliable and messages are often lost [1]. Therefore, none of
the security protocols are able to achieve a distributed, scalable
form of integral communication.



MQTT is another communication protocol popular with
constrained nodes. It is built on TCP and IP [17]. MQTT has 3
different reliability standards called Quality of Service Levels
[17]. The first level is 0, in which a message is delivered at
most once and no acknowledgement of reception is required
[17]. The second is level 1, in which every messaged is
delivered at least once and acknowledgement of reception
is required [17]. The third level is 2, in which a four-way
handshake mechanism is used to deliver a message exactly
once. Despite these different levels of reliability, MQTT also
lacks scalability as more nodes connect to a centralized broker
that must perform handshake procedures [13].

C. IoT Blockchains

Blockchain has been proven to be highly scalable but has
not been largely applied to IoT devices nor explored as a
source of integrity-first communication. The most well known
variation of blockchain specifically designed for IoT is the
tangle, which is accompanied by the IOTA coin [15]. The
tangle stores the chain in a DAG structure to reduce space
and also has a light variation specifically for small devices
[15]. In order for nodes to get their transactions approved, they
must approve 2 other transactions first [15]. This makes the
transactions fee-less but also means that there are no miners
in the system. Without miners, the system has less incentive
to grow. Furthermore, nodes can decide for themselves which
transactions to approve. This can prevent certain transactions
from being approved. Therefore, a coordinator that decides the
order in which transactions will be approved is currently used.
This is problematic because it creates a level of centralization
and single point of failure within the network [2].Also, the
tangle is a relatively small blockchain variation making it
vulnerable to a 51% takeover attack.

D. IoT Chain

IoT chain uses a DAG structure similar to the tangle and also
uses Simplified Payment Verification (SPV) to facilitate oper-
ations on smaller devices [5]. SPV allows devices to conduct
payment verification without maintaining complete blockchain
information as long as block headers are preserved [5]. IoT
chain also uses practical byzantine fault tolerance (PBFT) to
ensure fast consensus [5]. PBFT is a state machine replication
algorithm that is based on the consistency of message passing
[5]. The combination of the DAG structure and PBFT allow
transaction times for IoT chain to be milliseconds [5]. Despite
these benefits, the primary limitation of IoT chain is that it
requires a specific operating system and linking module [5].
This makes it a hardware solution which is more difficult to
integrate with older devices. Also, the relatively small size of
IoT chain makes it vulnerable to a 51% attack.

E. IoTex

IoTex similarly uses PBFT and SPV to ensure fast trans-
action times and limited storage space [1]. The key concept
for IoTex is the idea of blockchains within blockchains [1].
Essentially, different blockchains are used for different kinds

of IoT devices [1]. This is done because different devices have
different features and by separating these features into different
blockchains, no one device has to store large chains [1]. For
example, one chain might record transactions and another one
might have turing-complete contracts on it [1]. There is a root
blockchain that manages all the blockchains [1]. However, this
root blockchain is problematic because it introduces a layer of
centralization. Like the tangle and IoT chain, the small size of
IoTex makes it vulnerable to a 51% attack.

F. NeuroMesh
One blockchain that successfully provides secure communi-

cation for IoT devices, which is most similar to our design, is
NeuroMesh [8]. NeuroMesh functions as a “friendly” botnet
to fight against other botnets and communicates security
commands to IoT devices using the Bitcoin blockchain as
the communication protocol [8]. While this technology does
provide integral communication because of the size of the
Bitcoin network (minimizing the 51% attack risk), it has
several operational constraints. First, NeuroMesh is only able
to send 80 bytes of characters at a time [8]. This might
be fine for sending security commands to IoT devices, but
is insufficient to handle substantial data transfers. Second,
the Bitcoin network is slow and expensive compared with
Ethereum [18]. Finally, while NeuroMesh is only 1MB, it uses
SPV which must store block headers [8][14]. This limits how
small it can become.

III. DESIGN PARAMETERS

For our light client, we focused on allowing constrained
nodes to participate in global blockchain networks without
needing to host an entire node. There were many parameters
we had to consider in this light design. First, we needed to
select an implementation of blockchain to use. There are many
different implementations of blockchain, including both Bit-
coin and Ethereum [18][14]. We initially considered creating
our own blockchain, however, small blockchain networks are
often vulnerable to 51% attacks. Also, we wanted to choose
a blockchain implementation that was fast, inexpensive and
reliable. Therefore, we decided on Ethereum.

Next, we had to find a way to scale down the size of
Ethereum, both in terms of code size and chain data. We chose
not to store the chain data at all and to reduce the code size
using compiler tricks as well as manual stripping of the code.

Finally, we had to figure out how to avoid storing the
chain data while also maintaining the correct parameters of the
network, such as nonce and gas price. We achieved this by first
storing these parameters locally, and occasionally querying the
network to ensure that locally stored data matched global data.
With all of these considerations in mind, we have implemented
a light client version of Ethereum that is able to send and
receive data from other devices.

IV. LIGHT CLIENT IMPLEMENTATION

A. Using Ethereum as a Base
As previously mentioned, the integrity of blockchain com-

munication comes from the size of the network. For example,



when the number of participants in the blockchain is small, it
is easy for a malicious actor to execute a 51% attack. While
Bitcoin is the largest blockchain network, we sought a large
blockchain that does not limit data transfer to 80 bytes nor
has a high cost of transaction. For these reasons we chose the
Ethereum blockchain [18]. Like Bitcoin, Ethereum uses proof
of work as a decentralized consensus algorithm to hash blocks
to the blockchain [18]. The coins exchanged in the Ethereum
network are ethers rather than bitcoins [18].

B. Avoiding Storing Chain Data

A considerable challenge was avoiding the need to store the
Ethereum chain data (including headers) on constrained nodes
so that they still could participate in the Ethereum network.
Nodes rely on chain data to determine their nonce [18]. A
node’s nonce is a count of its outgoing transactions [18]. Every
time a node wants to make a new transaction it must include
its current nonce, otherwise the transaction will be rejected.
Keeping the nonce consistent is crucial to the function of the
light client.

In the light client implementation, nodes keep track of
their nonce locally and occasionally query other nodes in the
network to gain a consensus on their correct nonce.

In addition to the nonce, nodes need to have correct gas
limit and gas price values in order to ensure that their
transactions are mined and stored in the chain. Gas pays for
the computation of the transaction regardless of whether it is
accepted or not. This transaction fee is equal to gas limit *
gas price. These values have been hard coded at a gas price
of 30 Gwei (equal to 0.00000003 ether) and a gas limit of
210000 units of gas because these values are highly likely
to get transactions added to the chain. Therefore, light nodes
do not need to query for this data. With the gas and nonce
set correctly, the light node is able to exchange transactions
without storing chain data.

C. Reducing Code size

Eliminating the need to store chain data greatly reduces the
size of the code that needs to be stored on the node. However,
the current open source code for Ethereum is still 30 MB.
Therefore, we have stripped as much code as possible from the
node in order to reduce its size. Since the light nodes are not
acting as miners in the system, there are many aspects of the
code base that can be removed for the light client, such as any
code related to mining. Furthermore, there are a few compiler
flags that we also added in order to cut down on size. To date,
we have stripped the code base to 5 MB while preserving the
ability to send transactions and query other nodes. Although 5
MB is sufficient for many smart city devices (many CCTVs),
we aim to reduce this size even further.

D. Architecture and Communication

As seen in Figure 1, the light client architecture interacts
with full nodes and other light nodes in a distributed manner.
The light nodes do not store any chain data but can both
send and receive data as indicated by the two-way transaction

Fig. 1. Distributed Node Architecture

broadcast arrows. The light nodes send data by adding that data
to a transaction and then sending the transaction to another
node. When the light node wishes to send a transaction, it
pings all Ethereum nodes, just like any full node would. Only a
full node can process the light node’s data, which is indicated
by the red ”x” shown between light node communications.
When a full node successfully mines the light node’s block
(indicated by a checkmark), other full nodes will no longer
be able to mine the same block (indicated by an ”x”). After
the light node’s block is successfully mined it is posted to the
Ethereum network as an immutable value on the ledger. The
light client must pay a small gas fee should it wish to send
data, usually on the order of a few cents [11].

Light clients are able to receive data from the full nodes
by pulling data from the blockchain. Although these light
nodes will not store the blockchain themselves, they can query
other nodes for information about the chain. Therefore, these
nodes can query to see whether any recent transactions have
been sent to them and then download these specific, small
transactions. These transactions are signed and can be verified
using cryptography [18]. Therefore, the light nodes and full
nodes are able to send and receive messages effectively, and
the small node does not need to store the entire chain data.

If the light client has a large amount of information it wants
to send all at once, it can queue transactions and aggregate
the transfer. The gas limit of an Ethereum transaction is
about 3,000,000 gas which allows up to 780 kB of data per
transaction [3]. Therefore, at any given time we queue up to
this amount. The extent of transaction queuing varies by the
amount of available storage on the device.

V. DISCUSSION

Our Ethereum light client communication protocol for smart
city IoT devices provides assurance that data was not com-
promised in transit. The light client authenticates the origin
of a data source based on the unique Ethereum address
that initiated the transaction. This can be trusted because of
the proof of work consensus algorithm and the size of the
Ethereum chain. Many urban critical infrastructure sectors rely
on integral communications. For example, electric grid infras-
tructure requires device state information to be transferred over
networks at regular intervals. If an attacker compromised the
integrity of state data, there could be cyber-physical damages.



Despite the benefits of using the light client for communi-
cations, there are limitations of this approach which restrict
its practical implementation to certain IoT use cases.First,
the light client will require an operating system to run. This
considerably limits the number of devices it is applicable
for. Also, the block time of our light client is on average
15 seconds meaning that there is a transaction delay for
data [11]. This is superior to Bitcoin’s block time which
is closer to 10 minutes [11]. Therefore, devices requiring
real-time data transfer should not use this protocol. Another
consideration is that the average cost to send an Ethereum
transaction using our light client implementation is 10 cents
for gas [11]. This is considerably less expensive compared
to Bitcoin-based NeuroMesh which costs an average of 75
cents per transaction [7]. However, for IoT use cases that
require constant transactions, this could become very costly
over time. While our Ethereum light client is both faster and
less expensive than NeuroMesh, we acknowledge that it is not
optimal for all types of use cases.

Another advantage of our IoT blockchain compared with
IoTex, IoT chain and the tangle is that the light client resides
on a major blockchain. Ethereum is widely used - over 10,000
transactions are sent every hour and within a 24 hour time
period, around 200,000 addresses will be active [11]. Because
of the high volume of users, it would be difficult for an attacker
to gain control of over 51% of the network, unlike other IoT
blockchain implementations.

To date, we have tested the light client on less than 100
devices. The transactions have reliably been sent and received
within the expected constraints of the Ethereum network. We
plan to install this communication protocol on more devices to
test the light client at scale and under failure conditions, such
as when a large portion of the network crashes or a node’s
transaction is continually rejected. To achieve scale, we will
be publicly release the light client to the research community
for testing.

VI. CONCLUSION AND FUTURE WORK

Our research in developing a light client, hopes to address
the problems with communication integrity for IoT devices.
Public blockchains such as Ethereum have given us the ability
to disseminate data in a scalable and distributed fashion. Our
future work on the light client will include further reducing
its size and establishing optimal conditions for its function
on smart city IoT devices. We also aim to develop an agent
that will interpret data from the light client and implement
commands on the IoT endpoint. Building an agent for the
light client will be the basis for an integrity-driven approach
to performing updates for IoT devices at scale.

REFERENCES

[1] Iotex: A decentralized network for internet of things.
2018. https://iotex.io/white-paper.

[2] Our response to ‘a cryptocurrency without a blockchain
has been built to outperform bitcoin. 2018.

[3] Ethereum Blockchain App Platform, (Accessed: 2019-02-
13). https://www.ethereum.org.

[4] Shodan, (accessed April, 2018). www.shodan.io/.
[5] Iotchain: A blockchain security architecture for the in-

ternet of things. In Proceedings of the IEEE Wireless
Communications and Networking Conference (WCNC
2018), pages 1–6, April 2018.

[6] Riccardo Bonetto, Nicola Bui, Vishwas Lakkundi, Alexis
Olivereau, Alexandru Serbanati, and Michele Rossi.
Secure communication for smart iot objects: Protocol
stacks, use cases and practical examples. 2012 IEEE
International Symposium on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 2012.

[7] David Easley, Maureen O’Hara, and Soumya Basu. From
mining to markets: The evolution of bitcoin transaction
fees. (May 1, 2018). https://ssrn.com/abstract=3055380.

[8] Gregory Falco, Caleb Li, Pavel Fedorov, Carlos Caldera,
Rahul Arora, and Kelly Jackson. Neuromesh: Iot security
enabled by a blockchain powered botnet vaccine. ACM
Proceedings: International Conference on Omni-Layer
Intelligent Systems (COINS), 2019.

[9] Gregory Falco, Arun Viswanathan, Carlos Caldera, and
Howard Shrobe. A master attack methodology for an
ai-based automated attack planner for smart cities. IEEE
Access, pages 48360–48373, August 28, 2018.

[10] Igor Fovino, Andrea Carcano, Thibault Murel, and Al-
berto Trombetta. Modbus/dnp3 state-based intrusion de-
tection system. 2010 24th IEEE International Conference
on Advanced Information Networking and Applications,
2010.

[11] Adam Gencer, Soumya Basul, Ittay Eyall, Robert van
Renessel, and Emin Sirer. Decentralization in bitcoin and
ethereum networks. arXiv preprint arXiv:1801.03998,
2018.

[12] Jiyong Han, Minkeun Ha, and Daeyoung Kim. Practical
security analysis for the constrained node networks:
Focusing on the dtls protocol. 2015 5th International
Conference on the Internet of Things (IOT), 2015.

[13] Andrew Minteer. Analytics for the Internet of Things
(IoT).

[14] Satoshi Nakamotoi. Bitcoin: A peer-to-peer electronic
cash system. 2008. https://bitcoin.org/bitcoin.pdf.

[15] Popov Sergui. The tangle. 2015. https://iota.org/
IOTAWhitepaper.pdf.

[16] Zhengguo Sheng, Shusen Yang, Yifan Yu, Athanasios
Vasilakos, Julie McCann, and Kin Leung. A survey
on the ietf protocol suite for the internet of things:
standards, challenges, and opportunities. IEEE Wireless
Communications, pages 91–98, 2013.

[17] Dinesh Thangavel, Xiaoping Ma, Alvin Valera, Hwee-
Xian Tan, and Colin Tan. Performance evaluation of mqtt
and coap via a common middleware. 2014 IEEE Ninth
International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP), 2014.

[18] Gavin Wood. Ethereum (eth) – whitepaper. 2015. http:
//gavwood.com/paper.pdf.


