

Security vulnerabilities in IT/OT networked business processes risk to impacts business/society via aggregation effects along supply chains.

1. Enterprise susceptibility to security vulnerabilities within an

- 3. Supply-chain network topologies (SCNT) of service-dependent
- enterprise ecosystems drive aggregate multi-party (MP) loss.
- 4. *Fat-tailed* node degree statistics in SCNTs drive MP CAT risks. IT/OT Network architecture

Mesh network

Cluster network

Cyber loss Plots are based on 100 K Monte-Carlo simulations using various loss distributions analyzed in our mathematical framework grounded in probability theory, random processes, network science, & statistics.

Contacts: ranjanp@mit.edu*, szeijl@mit.edu, msiegel@mit.edu

A New FAIR Method to Boost IT/OT Infrastructure Resilience GOAL: Innovate the FAIR method for critical IT/OT network infrastructures. This innovation will lead to the design of resilient choices for IT/OT (process) networks that are subject to APT cyber-attacks. Ranjan Pal, Sander Zeijlemaker, Michael Siegel

adversary-aware IT/OT network influences *first-party* (FP) loss. 2. Star and Mesh IT/OT (process) networks reduce first-party loss. First-Party Loss profile (topology)*

We innovate the FAIR method in TWO aspects: (a) estimate enterprise cyber-loss within critical infrastructures and enterprises increase their exposed profile from APT threat impacts, and (b) estimate cyber-loss profile for enterprise advanced persistent threats (APTs). This ultimately IT/OT infrastructure (process) networks (NWs). Our innovation helps to: • Assess *apriori*, enterprise cyber-loss impact profile (via a Monte Carlo method). • Organize and design business processes NWs that limit APT cyber-loss impact. Drive (a) enterprise table-top exercises to execute APT risk scenarios in IT/OT NWs and (b) cyber-protecting NW *crown jewels* to mitigate cyber-loss impact.

4. Action items to boost resilience in IT/OT networks

(A) Netwo

- Lower AP
- 1. Creatin
- 2. Creatir in clust
- (B) Resilie
- 1. Cyber-i
- resilien 2. Light ta
- sustaina insuran
- 3. Heavy not be
- cyber-Improv 4.

1. Interconnectedness aggregates cyber risk 2. Innovating FAIR for IT/OT system (process) networks

ork Architecture	(C) Netwo
PT induced cyber-loss by:	Lower AP
ing star shaped networks.	1. Strong
ing business process elements	patchir
sters.	2. Deploy
ience via Insurance	solutio
-insurance boosts IT/OT	3. Effecti
nce.	4. Block
tailed loss distributions will be	traffic.
nable to coverage in the cyber-	(D) Resil
nce market.	Plan ahea
v tailed loss distributions will	1. Netwo
sustainable to coverage in the	2. Bug be
insurance market.	3. Cyber-
ve cyber-posture and culture	4. Back-
\checkmark	

to attract cyber-insurance. providers.

Probability Density of Y

Cyber-Loss Impact Illustration of fat-tailed cyber-loss impact. ($\alpha = fat$ tail degree)

ork Security

PT induced cyber-loss by:

vulnerability management & ing discipline.

detection anomaly ying ons.

tive network segmentation.

and/or filter unwanted network

ilience Planning

ad to lower APT cyber-loss by:

ork penetration tests.

oountry programs.

r-range exercises.

-ups (data, code, state).

A tour of fat-tailed (Cyber-Loss, Node Degree) statistics

Illustration of fat-tailed node degree statistical distribution