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Clean energy technology innovation is never an isolated process within the energy sector. The influence
of related industrial sectors on clean energy innovation has, however, not been extensively studied. In
this paper, we examine how the structure of existing related industrial sectors, which we name as the
inter-sector network, affects clean energy technology innovation. We present a novel approach to
measuring various characteristics of the inter-sector network. Using panel data of 61 countries from 1997
to 2012, we test the impacts of three key structural attributes of the inter-sector network—size, strength,
and proximity—on innovation performance in the wind power sector. We have three major findings: 1) A
country with more industries related to the wind industry is likely to have higher knowledge generation
and market deployment in the wind power sector; 2) A country with more globally competitive in-
dustries related to wind power is likely to have higher market deployment of wind technologies, but it
does not significantly affect knowledge generation; 3) A inter-sector network that is more closely related
to the wind industry facilitates knowledge generation but may hinder wind technology deployment.
These findings highlight the double-sided impacts of the inter-sector network on clean energy innova-
tion. Our findings also suggest the need for industrial policies to foster interactions between clean energy

sectors and their related manufacturing sectors.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Clean energy innovation plays essential roles in efforts to
combat climate change, promote economic competitiveness, and
achieve global energy security. Countries around the world have
increasingly adopted policies to accelerate clean energy innovation.
By the end of 2015, 165 countries had implemented various
renewable energy policies, including 82% of high-income countries,
80% of high-middle countries, 67% of middle-low income countries,
and 62% of low-income countries (REN21, 2016). While these policy
initiatives have contributed to the rapid progress in renewable
energy development in many countries (Lewis, 2007; Nemet,
2009), success in transitioning to clean energy sources varies. For
example, China, India, Brazil, and many developed countries have
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witnessed robust growth in renewable energy innovation. On the
contrary, some developing countries which implemented similar
policies still lag in clean energy technology development and
adoption. Consequently, identifying additional factors that influ-
ence the pace of a country’s clean energy innovation is important
for accelerating the transition to clean energy systems in devel-
oping countries and ultimately promoting global energy techno-
logical change.

Among non-policy factors, existing research has identified that
knowledge base (Murphy, 2001), technological paradigms (Geels,
2004), economic development (Grossman and Krueger, 1991) and
actor interactions (Lacasa and Shubbak, 2018) influence the pace of
clean energy innovation. Clean energy innovation is built on multi-
disciplinary knowledge. Thus, it is not an independent process, but
rather a systematic process depending on various supporting sec-
tors (Porter, 1990; Adner, 2006). However, minimal research has
been devoted to exploring the impacts of other related industrial
sectors on clean energy innovation. A few qualitative case studies
suggest that the rapid development of China’s solar photovoltaic
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(PV) industry benefit from the country’s strength in electronics
manufacturing and its investment in the semiconductor industry
(Quitzow et al., 2017). Similarly, China’s capacity for heavy industry
and generator manufacturing has supported the exponential
growth of its wind power sector (Lewis, 2013). In addition, the
prices of certain strategic raw materials used for wind power can
have substantial impacts on the generation costs of wind projects
(Blanco, 2009). To the best of our knowledge, there has been one
study that empirically examines the impacts of related industrial
sectors on clean energy innovation and it only tests the impacts of
one complementary sector, the semiconductor industry, on solar PV
innovation (Choi and Anadon, 2014). Little research has been con-
ducted to identify all supporting sectors for a specific clean energy
technology and how these related industrial sectors affect the
development and adoption of the emerging clean energy
technology.

To fill this intellectual gap, this paper provides an in-depth
investigation of the related industrial sectors and examines their
impacts on clean energy innovation. Following the systemic
perspective (Gallagher et al., 2012), we define clean energy inno-
vation as a process that starts from the research and development
(R&D) of new clean energy technology and proceeds to demon-
stration and large-scale deployment. We draw on the product space
theory (Hidalgo et al, 2007; Mendonga, 2009; Heimeriks and
Boschma, 2013; Colombelli et al., 2014; Tanner, 2015) and intro-
duce a comprehensive approach to measuring the structure of a
country’s industrial sectors that are related to the clean energy
sector, referred to as the “inter-sector network”, hereinafter. The
inter-sector network consists of manufacturing sectors that are
related to a specific clean energy sector, such as wind power, solar
PV, or energy efficiency. The related manufacturing industries can
promote clean energy innovation by providing knowledge spill-
overs, offering supplementary assets, and establishing the legiti-
macy of emerging technologies.

In this paper, we use the wind power sector to conduct an
empirical analysis regarding whether inter-sector networks can
shape clean energy innovation performance and, if so, what
structural characteristics prompt better innovation performance on
a national scale. The wind power sector is ideal for exploring the
impacts of inter-sector networks on energy innovation. Wind po-
wer relies on extensive multi-disciplinary cooperation between
related industries as a wind turbine has more than 8,000 compo-
nents which require a high level of precision and compatibility
among different components to ensure reliable operation. As a
result, the improvement of wind turbine manufacturing is depen-
dent on the productivity of the networked enterprises which
specialize in each wind turbine component. While there are tech-
nological differences between wind power and other clean energy
technologies, they share some commonalities regarding techno-
logical complexity and the rigorous component compatibility
required for successful operation. Even the highly modularized
solar PV industry relies on cooperation between different product
segments to facilitate continuous innovation (Zhang and Gallagher,
2016). Hence, the findings of this research are applicable beyond
the scope of the wind power sector.

This research provides three major contributions to the existing
literature on clean energy innovation and has important policy
implications. First, this study extends the existing literature on
clean energy innovation system by introducing the inter-sector
network factor to the innovation system and highlighting the
importance of a country’s existing industrial structure to clean
energy innovation. Second, it presents a novel approach to
measuring various structural characteristics of the inter-sector
network for the wind power sector, including size, strength, and
proximity, which can be applied to many other clean energy sectors

in future research. Third, this paper is the first of its kind to
empirically test the influence of inter-sector network on energy
innovation by using a large sample at the country level, which
overcomes the limited generalizability of previous case studies. Our
empirical findings on the double-sided impacts of the inter-sector
network on clean energy innovation have important implications
for energy technology policymakers. In addition to existing energy
policies that promote the development and deployment of clean
energy technologies, our findings suggest the necessity of indus-
trial policies that foster interactions between the emerging clean
energy sector and its related industrial sectors. This is particularly
important for countries that are struggling with clean energy
transition.

This paper is organized as follows. Section 2 provides the
theoretical framework and proposes the key hypotheses. Section 3
describes the data and major variables. Section 4 presents the
empirical models and results. We discuss our findings and conclude
the paper in Section 5.

2. Theoretical framework
2.1. Main drivers of clean energy innovation

Clean energy innovation faces various economic, technological,
and political barriers. First, unpriced negative environmental ex-
ternalities of fossil fuels and knowledge spillovers often lead to
underinvestment in clean energy development and deployment
from the private sector (Jaffe et al., 2005; Tang and Popp, 2016).
Second, the adoption of renewable energy technologies suffers
from the intermittency of these energy sources, which imposes
greater challenges to grid reliability than fossil fuel technologies.
Additionally, existing infrastructure and institutional systems that
support the incumbent fossil fuel energy system create political
resistance during attempts to transition to clean energy (Jennie and
Wilson, 2016). Hence, identifying the key drivers for clean energy
innovation is crucial to overcoming barriers and accelerating the
pace of clean energy innovation.

The existing literature emphasizes the role of policy incentives
in addressing barriers to clean energy innovation (Lewis, 2007;
Nemet, 2009; Campisi et al., 2015, 2016). Clean energy technology
innovation policies are often classified into two major categories: 1)
technology-push policies that subsidize the clean energy R&D ac-
tivities, and 2) demand-pull policies that stimulate market demand
for clean energy technologies (Nemet, 2009). Technology-push
policies, such as public R&D funding, can incentivize more R&D
activities to generate new knowledge, and improve absorptive ca-
pacity (Johnstone et al., 2010; Lindman and Soderholm, 2016).
Demand-pull policies, such as feed-in tariffs (FITs), renewable
portfolio standards (RPS), and tax credits, subsidize market
deployment, which can provide feedback to improve emerging
technologies, and in turn, drive new knowledge generation
(Johnstone et al., 2010; Lindman and Soderholm, 2016). The RPS is
widely adopted at the state level in the United States while most
European countries use FITs to accelerate the innovation and
deployment of clean energy technologies. Existing studies have
indicated their high effectiveness in promoting clean energy
innovation (Green and Vasikakos, 2011; Kim and Tang, 2020;
Sarasa-Maestro et al., 2013).

Another stream of literature emphasizes multiple learning
mechanisms that can contribute to the creation and diffusion of
new technologies. New knowledge can be generated from R&D
activities to reduce production costs of an energy system, which is
referred to as learning-by-searching (Junginger et al., 2005; Qiu and
Anadon, 2012; Tang, 2018). Less codified or tacit knowledge (know-
how) can also be acquired through learning-by-doing. Empirical
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studies have shown that installation and operational experience
accumulated through the deployment of wind and solar energy
technologies facilitates cost reduction, and in turn, accelerates
large-scale deployment (Qiu and Anadon, 2012; Nemet, 2012;
Grafstrom and Lindman, 2017). Furthermore, interaction between
actors across different innovation phases in the national innovation
system, or across countries can facilitate new knowledge spillovers
and technology transfer and induce technological progress (Binz
and Anadon, 2018; Grafstrom and Lindman, 2017; Junginger et al.,
2005; Lewis, 2007; Tang and Popp, 2016; Tang, 2018).

While existing empirical research on clean energy innovation
has acknowledged the influence of cross-actor, cross-stage, and
cross-country interactions, the horizontal interaction among
different industrial sectors in the energy innovation system has not
yet been extensively investigated. The importance of inter-sector
interaction has been increasingly discussed in innovation
ecosystem theory (Adner, 2006), industry synergy theory
(Mendonga, 2009) and product space theory (Colombelli et al.,
2014; Hidalgo et al., 2007; Heimeriks and Boschma, 2013; Tanner,
2015). These new theories emphasize that most breakthrough in-
novations do not occur in isolation, but rather depend on their
external innovation ecosystem — which refers to the collaborative
arrangements through which innovators combine their individual
offerings with external providers of complementary resources and
supportive infrastructure to form a coherent solution (Adner,
2006). As clean energy innovation often involves interdisciplinary
knowledge and expertise, cross-sector interaction plays an even
more vital role. There is, however, only a handful of qualitative case
studies that recognize that technological innovation in wind energy
and solar PV relies on one or more supportive sectors (Lewis, 2013;
Quitzow et al., 2017). Quantitative analysis is also rare and has only
examined one key input sector, the semiconductor sector, on solar
innovation (Choi and Anadon, 2014). Thus, this paper extends
existing clean energy innovation studies by introducing a
comprehensive approach to measuring cross-sector interactions
and investigating to what extent the inter-sector network shapes a
country’s trajectory of clean energy innovation.

Notably, besides the factors discussed above, existing research
also identifies socio-economic factors that affect a country’s clean
energy innovation and technological change, such as energy prices
(Popp, 2002), natural resource endowments (Huenteler et al.,
2018), social-technology regime (Geels, 2004), economic growth
(Grossman and Krueger, 1991), market signals from the electricity
market (Hiroux and Saguan, 2010) and innovative financial tools
(Morea and Poggi, 2017; Campisi et al., 2018). We control most of
them in our empirical models when we examine the impacts of the
inter-sector network.

Knowledge
Spillovers

2.2. Hypotheses: inter-sector network and clean energy innovation

In this paper, we mainly draw on the product space theory to
develop our theoretical framework. Originating from the develop-
ment economics and economic geography, the product space the-
ory argues that technology, capital, institutes, and skills needed to
develop newer technological sectors are more easily adapted from
some sector than from others (Colombelli et al., 2014; Heimeriks
and Boschma, 2013; Tanner, 2015). New technology development
is not only path-dependent but also place-dependent as well
(Heimeriks and Boschma, 2013). Countries are more likely to
expand into new industries, such as the green industries, that are
closely related to those they currently produce (Hidalgo, 2007;
Hamwey et al., 2013; Fraccascia et al., 2018).

Considerable research indicates that the related industrial sec-
tors can facilitate clean energy innovation through multiple
mechanisms as shown in Fig. 1. For example, knowledge spillovers
from established industries to the emerging sector can occur
through the flow of talents, intermediaries or capital assets (Hippel,
2007). Related sectors can provide a clean energy sector with
crucial assets, such as specialized manufacturing capabilities, dis-
tribution channels, service networks, and complementary tech-
nologies which are closely related to the engineering and
commercialization of the emerging technologies (Rothaermel,
2001; Rothaermel and Hill, 2005). For example, as steel accounts
for 89% of all materials used in a typical wind turbine (Bolinger and
Wiser, 2012), the wind power sector can benefit from the iron and
steel industry’s pre-established manufacturing expertise, infra-
structure, and products. Furthermore, during the process of tech-
nology adoption and development, related sectors can help
facilitate social acceptance and legitimacy for the emerging in-
dustries through their pre-existing institutional systems (Baum
et al., 2000; Jacobsson and Bergek, 2004).

In this paper, we define the inter-sector network as the existing
industrial sectors that are related to the clean energy sector in a
country. Specifically, we investigate the inter-sector network for
the wind power sector in this study. Integrating the product space
theory and the network analysis literature, we investigate the im-
pacts of three structural features of the inter-sector network,
namely the number of related sectors in the inter-sector network
(Rodan and Galunic, 2004; Hidalgo et al., 2007; Chiu, 2009), the
average competitiveness of these related sectors in the inter-sector
network (Choi and Anadon, 2014; Porter, 1990; Rigby, 2015), and
the average proximity between these related sectors and the wind
power sector (Chiu, 2009; Boschma et al., 2013). We propose the
following three hypotheses to test the impacts of the inter-sector
network on wind energy innovation.

Possibility of
technology success

Inter-sector Complementary ,  Possibility of Innovation
Network Assets market success Performance
Interest Legiti
p— gitimacy
Alliance

Fig. 1. Mechanisms of the network of related sectors influencing innovation performanceData
source: summarized by authors based on Hippel (2007), Rothaermel (2001), Rothaermel and Hill (2005), Baum et al. (2000) and Jacobsson and Bergek (2004).
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Product space theory argues that countries are able to spread to
new sectors if they are already able to produce related products
around the new sectors (Hidalgo et al., 2007). If a country has more
related industries to the new industrial sector, it is more likely to
produce related products around the new sector. Hence, the first
factor we examine is the size of the inter-sector network, which
refers to the number of industrial sectors that are related to the
emerging clean energy sector. A larger network of related in-
dustries often indicates a larger knowledge base and pool of re-
sources. The extent of an emerging sector’s access to information,
resources, and linkages usually determine its ease in exploiting
current knowledge and learning about upcoming industrial
changes (Rodan and Galunic, 2004; Chiu, 2009). In this study, we
assume a positive relationship exists between the number of
related industrial sectors for wind power and the innovation per-
formance of the wind industry in a country. Thus, we test the
following hypothesis:

H1. A country with a larger inter-sector network related to the
wind power sector is more likely to have better innovation per-
formance in its wind industry.

Countries follow a diffusion process in which comparative ad-
vantages move preferentially toward technological sectors close to
existing sectors (Hidalgo et al., 2007; Fraccascia et al., 2018). An
emerging sector embedded in a network of efficient and competi-
tive industries has a better industrial foundation to develop its own
strength (Porter, 1990; Rigby, 2015). For example, the strength of a
country’s semiconductor industry is an important determinant of
solar PV manufacturing and deployment (Choi and Anadon, 2014).
Similarly, if a country’s steel and iron industry and generator
manufacturing are globally competitive, it provides strong support,
in terms of materials, human resources, and manufacturing expe-
rience, for the development of the wind industry (Lewis, 2013). In
this study, we use the strength of the inter-sector network to
describe the global competitiveness of the related industries in a
country. We test the relationship between the strength of the inter-
sector network for wind power and wind technology innovation:

H2. A country with a stronger inter-sector network related to the
wind power sector is more likely to have better innovation per-
formance in its wind industry.

Countries move easily through the product space by developing
goods close to those they currently produce (Hidalgo, 2007;
Fraccascia et al., 2018). Network proximity refers to the extent to
which a sector is closely tied to other industries in the network.
Some research argues that strong connection facilitates the ex-
change of knowledge and complementary assets, which are key
ingredients for innovation success (Chiu, 2009). Emerging sectors
that are more closely related to existing industrial networks tend to
utilize the existing knowledge and resources to ease the develop-
ment process (Boschma et al, 2013; Colombelli et al., 2014;
Heimeriks and Boschma, 2013; Tanner, 2015). Other studies, espe-
cially those from social networks and innovation, however, claim
that innovators actually receive novel information from weak ties
rather than strong ties (Granovetter, 1973). Some distance provides
innovators with fewer constraints and better maneuverability,
which permits greater leeway to pursue novel and relatively un-
sanctioned entrepreneurial activities (Rodan and Galunic, 2004;
Gilsing et al., 2008). In this paper, we also investigate the rela-
tionship between network proximity and innovation in a country’s
wind industry.

H3. A country with an inter-sector network that is more closely
related to the wind power sector is more likely to have better
innovation performance in its wind industry.

3. Methods
3.1. Sample

To test the impacts of the inter-sector network on wind tech-
nology innovation, we construct a panel of 61 countries from 1997
to 2012. Table 1 lists all the countries in our sample. These countries
are selected from the Global Wind Energy Council (GWEC) database
if they report any wind power installation by the end of 2014. As
shown in Table 1, our sample countries reflect great diversity in
terms of region, economic development, industrial structure, and
political and cultural environment. Thus, the findings of this study
have great generalizability to other countries with similar socio-
economic status.

3.2. Basic model

We use the following empirical model as shown in Equation (1),
to examine how different inter-sector network features affect
innovation in a country’s wind power sector:

Innovation; ; = 31 Network; ; + X+ + Yeargymmies + Wit (1)

where Innovation;, represents the innovative activities in the wind
power sector of country i in year t. Network;; represents the vari-
ables that measure key attributes of the inter-sector network for
wind power in country i in year t, while X;; is the vector of other
control variables, including policy instruments that support wind
innovation, wind resource endowment and economic status of
country i in year t. We include year dummies to control time-
varying unobservable factors for all countries, such as global tech-
nological change and progress on climate change actions, as well as
economic shocks.

3.3. Dependent variables

Three types of innovation measurements are commonly used in
the clean energy technology innovation literature: 1) input in-
dicators, such as R&D investments and the number of researchers;
2) output indicators, such as patents and publications; and 3)
outcome indicators, such as market size and new product values.
All of these indicators have their strengths and shortcomings. Given
the data availability for cross-country analysis, we use two indi-
cators—patent applications and installed capacity of wind power-
—to measure the performance of R&D activities and market
deployment of wind technologies respectively, which are two
major stages in the innovation process as we defined in the
introduction.

We use the number of wind power patents applied by inventors
from country i in year t (Npatent;;) to measure knowledge gener-
ation in a country’s wind power sector in a given year (Johnstone
et al,, 2010). ! The nationality of each patent application is identi-
fied based on the physical location of its inventors. If a patent is
shared among inventors from different countries, we add one
application to each country. As different countries have different
timeframes and criteria for approving a patent application, patent
applications can better capture the immediate output of R&D ac-
tivities and avoid any inconsistency due to the different patent
review processes across countries. The wind patent application
data is collected from the PATSTAT database by using the Interna-
tional Patent Classification (IPC) FO3D.

1 All patent applications are dated by the priority date, which is the initial date
that the application was filed.
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Table 1
Sample countries by income category.

Types Numbers Countries

High-income 32 Austria, Australia, Belgium, Canada, Chile, Croatia, Cyprus, Czech Republic, Denmark, Estonia, France, Finland, Germany, Greece, Hungary,
countries Ireland, Italy, Japan, Lithuania, Luxembourg, Netherlands, New Zealand, Norway, Portugal, Poland, Span, Sweden, Switzerland, South

Korea, United Kingdom, United States, Uruguay

Middle-income 12 Algeria, Argentina, Brazil, China, Costa Rica, Iran, Mexico, Peru, Romania, South Africa, Thailand, Turkey
countries

Low-income 17 Bulgaria, Egypt, Ethiopia, Honduras, India, Kenya, Latvia, Morocco, Mongolia, Nicaragua, Pakistan, Philippines, Tunisia, Tanzania, Ukraine,
countries Uganda, Vietnam,

Note: The classification of income is based on the Atlas method (in 2016 US Dollar) by the World Bank®!.

Table 2
Three approaches to measuring inter-sector relatedness.

Approach Basis of the relatedness Measures and data

Literature

1 Underlying technological knowledge
11 Inputs for production in different sectors

Patent data, such as co-patenting
Input-output data for products, including raw materials,
immediate products, and labors, etc.

Kauffman et al. (2000)
Feser and Bergman (2000); Feser (2005); Choi
and Anadon (2014)

11 Production capacity and management skills Trade data to measure co-location of different sectors in a country Hidalgo et al., 2007

of different sectors

Data Source: summarized by the authors based on Kauffman et al. (2000), Feser and Bergman (2000), Feser (2005), Choi and Anadén (2014), and Hidalgo et al. (2007).

Our second dependent variable, the newly installed capacity of
wind turbines in country i in year t (Ncapacity; ), reflects the market
deployment of wind technologies in a country. Market deployment
of new technology has been used in many previous innovation
studies to measure innovation performance (Lee and Lim, 2001; Mu
and Lee, 2005). The ultimate goals of wind technology innovation
are to reduce carbon emissions and improve energy sustainability
through the large-scale utilization of wind energy in electricity
generation. Thus, market deployment of wind technologies is also
an important indicator to assess the innovation performance in the
wind power sector. Notably, there are several cases that the value of
Ncapacity; is negative, which refers to the scenario that there are
more wind turbines retired than added in that year for a country.

3.4. Inter-sector network variables

There are generally three approaches to measuring inter-sector
relatedness as shown in Table 2. We use the co-exportation of
products (Hausmann and Klinger, 2006; Hidalgo et al., 2007;
Delgado et al., 2015) to calculate the relatedness between industrial
sectors. The exportation data is collected from the United Nations
Commodity Trade Database (UN Comtrade Database). The calcu-
lation of inter-sector relatedness and the selection of wind-related
industrial sectors are described in Appendix A. We identify 1991
manufacturing sectors related to the wind power sector. The
relatedness between these sectors and the wind power sector
ranges from 0.02 to 0.79. Table 3 presents the top 10 most related
sectors selected based on our relatedness calculation. Some highly-
related sectors provide important inputs for wind equipment
manufacturing (Bolinger and Wiser, 2012). For example, glass and
woods are the main production materials for turbine blades and
electrical boards are key inputs for turbine control systems. Other
related sectors, such as cranes and industrial machinery, do not
directly provide inputs for the wind industry. However, they have
similar production capacity with wind turbines. For example, most
of the wind turbine manufacturers in China originated from or are
supported by big heavy industry machinery manufacturers (Lewis,
2013).

With the list of sectors related to wind power identified using
the above method, we then use the UN Comtrade Database to
determine if country i exports products from each of the related
sectors on our list in year t. If so, those sectors that country i has

Table 3

The top 10 related sectors and their relatedness to the wind power sector.
Ranks Sectors Relatedness
1 Glass; carboys, bottles, flasks etc. 0.79
2 Electrical circuit protectors nes for <1,000 V 0.74
3 Cranes or derricks 0.71
4 Furniture, wooden, nes 0.70
5 Industrial machinery nes 0.70
6 Electrical boards, panels, etc 0.67
7 Parts of refrigerating or freezing equipment 0.67
8 Reservoirs/tanks/vats/etc, iron/steel capacity >3001 0.67
9 Sanitary ware and parts thereof, iron or steel, nes 0.67
10 Silverwares, silverware plated with precious metal 0.65

Data source: Authors calculated the relatedness based on methods and data sources
described in Appendix A.

exports will be included in the inter-sector network for the wind
power sector in country i.

The three structural features of the inter-sector network are
measured as follows:

1) The Size of the inter-sector network (N_size;) is measured
as the number of related sectors included in country i's inter-
sector network in year t.

2) The strength of the inter-sector network (N_strength;,) is
measured as the ratio of the number of related sectors that
country i has comparative advantages in year t (Ngca,, ) to the
size of its inter-sector network (N_size; ), as shown in equations
(2) and (3).2

Ngca,,

Nstrengthi,[ = Nsize (2)
it

2 In equation (2), RCA;, stands for revealed comparative advantage, which
measures whether country i exports more products from sector r, as a s%re of its
total exports, than the av, a%e share in the world. RCA;; = 1 if <X ”l(” /—'%

1. RCA;;¢ = 0 if X<;rltl 5 < 1, where x(r.i.t) represents gé {otal wrrie that

country i exporgbrodu ”from sector r in year t.
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Table 4

Summary statistics.
Variables Units Number of observations Mean SE Mini Maxi. Definitions
Ncapacity; MwW 976 284 1296 -5 18928 Newly installed wind capacity
Npatent;; Count 976 97 313 0 3140 New wind patent applications
N_Size;; — 976 1431 434 61 1985 Size of inter-sector network
N_strength; - 976 0.2 0.1 0.04 0.6 Strength of inter-sector network
N_Proximity; — 976 0.3 0.03 0.22 0.39 Proximity of inter-sector network
Policy_support; — 976 1 2 0 7 Policy incentives
Cpatent;;.q Count 915 564 1724 0 19441 Cumulative patent applications in previous year
Ceapacity; . MW 915 1241 4705 0 62412 Cumulative installed capacity in previous year
GDP_per_capita; $/capita 976 16563 185053 110 99100 GDP per capita
Land; 100km2 976 12028 23505 26 93882 land area

Data source: 1) capacity data is from World Wind Energy Association (WWEA), 2) patent data is from; 3) policy data is from the International Energy Agency and International
Renewable Energy Agency (IEA/IRENA), 4) GDP per capita and land areas are from World Bank, and 5) network indicators are calculated based on data from the United Nations

Commodity Trade Database.

n
Nrea, = > RCAj; (3)
1

where n = Ngjze,,

3) The proximity of the inter-sector network (N_proximity; ;)
refers to the average relatedness of sectors within the inter-
sector network for wind power in country i year t. We calcu-
late network proximity by using equation (4).

S 1Relatedness; w ¢
n

Np

(4)

roximity;, —
where n = Ngjze,,
3.5. Control variable: policy instruments

Measuring policy intervention is challenging, especially when
conducting a cross-country analysis. We construct policy variables
based on the seven policy instruments specifically supporting wind
power technology innovation identified by Johnstone et al. (2010).
These policy instruments include FITs, RPS, tax incentives, loan
incentives, capital investment subsidies, R&D investment, and
strategic planning. First, we control the intensity of policy in-
centives for wind power innovation, which is measured as the
number of types of policy tools that a country has adopted out of
the above seven policy instruments (Policy_support;;). The value of
Policy_support;; ranges from O to 7. This is not a perfect indicator
because the same policy tool may have different designs and
implementation across countries. A country may just adopt one
policy, but the stringency and efficiency of this policy tool can be
high enough to compete with countries with a variety of policies.
However, it is reasonable to believe that a country has a stronger
political desire to incentivize clean energy innovation if the gov-
ernment adopts more clean energy policies, which in turn implies a
stronger policy intervention. All policy data is collected from the
annual reports of the World Wind Energy Association (WWEA) and
the International Energy Agency and International Renewable En-
ergy Agency (IEA/IRENA) Joint Policies and Measures Database.

3.6. Other control variables
We also control for available wind resources, knowledge stock,
5 High-income countries refer to those with a GNI per capita above $12, 476.

Middle-income countries are those with a GNI per capita between $4,036 and $12,
475. Low-income countries are those with a GNI per capita of $4,036 or less.

previous market deployment, and the economic status of a country.
We use the land area of a country (land;) to measure available wind
resources in a country, as smaller land areas often correspond with
fewer wind resources. The level of a country’s economic develop-
ment can shape a country’s financial and technological capacity to
spur clean energy innovation (Grossman and Krueger, 1991). We
measure it by GDP per capita. Existing knowledge stock is measured
as the cumulative wind patent applications before year t (Cpatent; .
1) (Tang and Popp, 2016), and existing market deployment is
measured as the cumulative wind turbine installation (Ccapacity; -
1). Table 4 provides detailed definitions and summary statistics on
all the major variables in our paper.

The pairwise correlations among all variables (Table 5) show
that there is no strong correlation between the key network vari-
ables. Thus, we include all three network variables in our empirical
models. Since there is a high correlation between Cpatent;;.; and
Ccapacity;.1., we only include one of them in the model to avoid
multicollinearity.’

4. Empirical results
4.1. Results on knowledge generation

We use negative binomial regression to estimate the knowledge
generation models because the dependent variable, wind patent
applications (Npatent;;), is a nonnegative count variable (Johnstone
et al., 2010). The Hausman test (see Appendix B) indicates that the
fixed-effects model is better than the random-effects model.
Table 6 reports the results of the fixed-effects model. From model 1
to model 3, we gradually introduce the inter-sector network, policy
intensity index, and other control variables.

The results show that the size (N_size;;) and the proximity
(N_proximity;) of a country’s inter-sector network for wind power
are positively associated with the knowledge generation in its wind
power sector. These results confirm our first and third hypotheses.
A country with a larger inter-sector network that is more closely
related to wind turbine manufacturing can provide the wind power
sector with diverse and stronger complementary assets, human
resources, and knowledge spillovers to facilitate R&D activities in
the wind industry. However, the strength of the inter-sector
network does not significantly influence wind technology innova-
tion measured by patent applications. In addition to the inter-sector
network variables, a country’s policy support (Policy_support;;) is
also significantly associated with wind technology innovation.

3 In Tables 6 and 7, we present results for models with Cpatent;;.;. We have also
estimated models using Ccapacity;,.; as a control variable. The results are similar to
Tables 6 and 7
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Table 5
Correlation analysis among all variables.

Variables Ncapacity;r  Npatent;y  N_Sizej;  N_strength;;  N_proximity;, Policysupport;;  Cpatent;;; Ccapacityj¢-q GDP_per_capita; Land;

Ncapacity; 1

Npatent;, 0.43 1

N_Size;; 0.25 0.18 1

N_strength; 0.33 0.28 0.24 1

N_proximity;, -0.14 -0.17 -0.15 0.04 1

Policy_support;, 0.52 0.33 0.47 0.33 -0.12

Cpatent;;.q 0.92 0.60 0.27 0.39 -0.15 0.50 1

Ccapacityj 0.64 0.79 0.22 0.34 —-0.08 0.39 0.80 1

GDP_per_capita;;  0.32 0.11 0.43 0.25 —-0.06 0.57 0.35 0.22 1

Land; 0.18 0.37 0.19 0.07 -0.41 0.25 0.25 0.28 0.01 1

Table 6
Results on knowledge generation.
Dependent variable: Npatent;,
Modell Model 2 Model 3

N_size; 0.003*** (0.0003) 0.002*** (0.0003) 0.003*** (0.0004)
N_strength;, 0.36 (0.70) —1.03 (0.63) 1.24 (0.73)
N_proximity;, 9.33*+#* (1.82) 10.61*** (1.85) 5.66%** (2.04)
Policy_support;; 0.36*** (0.86) 0.15*** (0.03)
Cpatent;;_q 0.00003*** (0.00001)
GDP_per_capita; ¢ 6.6e-6** (2.9e-6)
Year fixed effect NO NO YES
Country fixed effect YES YES YES
Constant —8.03%** —7.00%** —5.50%**
Observations 848 848 795
Log likelihood —2778 —2704 —2488
Wald Chi 104 310 877
Prob>chi 0.000 0.0000 0.000

Notes: ***P < 0.01, **P < 0.05, *P < 0.1.

4.2. Results on market deployment

We use Tobit regression to estimate market development
models. Many countries in our sample did not have wind in-
stallations for multiple years. Since the dependent variable
(Ncapacity; ;) in the market deployment model is a typical limited
dependent variable, which has a truncated normal distribution
rather than a standard normal distribution, we use left-censored
Tobit to estimate market deployment models (Wooldridge, 2010;).

Table 7 reports the results of market deployment models. In
models 1-3, we gradually introduce the inter-sector network and
policy support variables, as well as other control variables.

The consistent results across the three models suggest that the

Table 7
Results on market deployment.

size of the inter-sector network and its strength have positive im-
pacts on wind power market deployment across countries. How-
ever, the proximity of the inter-sector network shows significant
negative impacts on wind power market deployment across all
models. The finding regarding the size of the inter-sector network
is consistent with our findings on knowledge generation in the
wind power sector, which confirm our first hypothesis that a
country will have better innovation performance in its wind in-
dustry if the country has a larger inter-sector network. The strength
of the inter-sector network, measured as the competitiveness of the
industries related to the wind industry, has positive impacts on the
market deployment of wind technologies. While a country with an
inter-sector network that is more closely related to the wind power

Dependent variable: Ncapacity;

Modell Model 2 Model 3
N_size;, 1.80*** (0.54) 1.75%** (0.54) 1.1*+* (0.50)
N_strength; 6631*** (1620) 6537*** (1625) 4489*** (1558)
N_proximity; —23134*** (6024) —22199*** (6200) —24588*** (6450)
Policy_support;; 37.65 (59) 122* (59)
Cpatent;;¢ 0.34*** (0.03)
GDP_per_capita; —0.04*** (0.01)
Year fixed effects YES YES YES
Country fixed effects YES YES YES
Constant 4170%* 3869 5669%**
Observations 974 974 957
Left_censored observations 416 416 403
Log likelihood —4880 —4880 —4792
Wald Chi 612 614 820
Prob>chi 0.000 0.000 0.000

Notes: ***P < 0.01, **P < 0.05, *P < 0.1.
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sector tends to have more wind patent applications, the proximity
of the network has significant negative impacts on market
deployment.

Consistent with existing clean energy innovation studies, results
from model 3 confirm that strong policy support leads to higher
deployment of wind power in a country. Interestingly, we observe a
significant and negative impact of a country’s GDP per capita on the
market deployment of wind power. There are two possible expla-
nations for this negative relationship between GDP per capita and
market deployment of wind turbines. One is the technological lock-
in assumption that developed countries have been locked in
traditional energy technologies and are more difficult to transition
to clean energy technologies. In contrast, developing countries with
lower incomes have not been locked-in and tend to be easier to
leapfrog to new energy technologies. Alternatively, this negative
relationship may be distorted by the “emerging economy effect”,
where emerging economies such as China and India, have lower
GDP per capita than the developed countries in our sample (see
Table 1). However, they have much higher annual wind installed
capacity compared with most of the high-income countries in the
sample.*

5. Discussion and conclusion

Using panel data from the wind power sector of 61 countries
between 1997 and 2012, this paper examines the impacts of the
inter-sector network on clean energy innovation. Building on the
product space theory from geography economics, this study in-
troduces a novel method to measure a country’s inter-sector
network related to a specific clean energy sector, such as the
wind power sector, based on the similarity of production capacity
between different manufacturing sectors. With the novel mea-
surements, we provide the first empirical analysis that compre-
hensively tests the influences of different inter-sector network
features, including the size, strength, and proximity of the inter-
sector network, on knowledge generation and market deploy-
ment of wind energy technologies. Our comprehensive analysis
provides the following insights into the roles of the inter-sector
network in clean energy innovation across countries.

5.1. Developing clean energy innovation based on existing inter-
sector networks

This paper extends the existing clean energy innovation
framework by highlighting the importance of related industrial
sectors to the emerging clean energy sector. In addition to energy
policy instruments, knowledge base, and political and economic
factors that have been identified by previous clean energy inno-
vation research, our empirical findings indicate the critical roles of a
country’s inter-sector industrial network in its clean energy inno-
vation. The inter-sector network can affect clean energy innovation
in both positive and negative ways.

Moreover, our paper sheds light on the network features that
are most influential in different stages of wind technology inno-
vation. First, our findings suggest that a country with a larger inter-
sector network comprised of globally competitive industries
related to wind turbine manufacturing tends to be in a more pro-
pitious position for both knowledge generation and market
deployment of wind technology. Second, an inter-sector network
that is more closely related to the wind power sector can benefit
knowledge generation in the wind industry. A potential

4 We also estimate the model after dropping China, India and Brazil from our
sample. The coefficients on GDP per capita becomes statistically insignificant.

explanation is that a closer relationship between the wind power
sector and its related industrial sectors spurs more knowledge
spillovers and therefore facilitates the creation of new knowledge
in the wind industry. In contrast, we find that higher relatedness of
an inter-sector network is negatively associated with wind instal-
lation. It could be that actors from closely related sectors have
inertia to transit to the renewable energy sector or they have more
direct competition with the wind power sector for resources in the
market. Third, an inter-sector network with more sectors having
comparative advantages promotes wind power market deploy-
ment. However, its impacts on knowledge generation are not clear.
A possible explanation is that sectors that are globally competitive
often have more financial resources. When firms from these related
sectors extend their business to the wind power sector, they have
enough financial capacity to develop the capital-intensive wind
equipment supply-chain. It is also possible that the involvement of
globally competitive firms can increase the social acceptance and
legitimacy of wind power technologies, which speed up the market
formation. Further qualitative research is needed to explore these
alternative explanations.

The impacts of inter-sector networks indicate that a country’s
selection of clean energy technologies should be aligned with its
existing industrial sectors. Specifically, governments should care-
fully assess the structure and strength of their existing industrial
sectors and prioritize the development of clean energy sectors that
have strong pre-existing inter-sector networks. The lack of a robust
inter-sector network for an emerging clean energy sector may slow
the innovation process and result in a waste of public financial
resources. Meanwhile, to maximize the potential benefits from
existing industrial sectors, governments can facilitate dynamic
exchanges between emerging clean energy industries and their
inter-sector networks in terms of knowledge, information, and re-
sources. Particularly, governments may need to encourage incum-
bent actors within the existing inter-sector networks, especially
those from sectors with strong competitiveness, to break down
their inertia and actively share their knowledge and financial assets
with the emerging energy sectors. This interaction will not only
promote clean energy innovation but also revive the traditional
sectors.

5.2. Implications for clean energy technology leapfrogging in
developing countries

An ongoing debate argues that developing countries lag in clean
energy transition due to the inability to mitigate their domestic
pollution or the transfers of pollution from developed countries
(Grossman and Krueger, 1991). Others, however, suggest that
developing countries can leapfrog to clean energy systems because
they are not locked in polluting technologies with high carbon
footprints (Goldemberg, 1998). Leapfrogging may take place in the
energy sectors of developing countries under certain conditions,
such as adequate access to foreign technologies, absorptive ca-
pacity, complementary assets, global learning network, appropriate
policy incentives, and organizational and institutional capacities
(Murphy, 2001; Lee et al., 2005; Lewis, 2007). In addition to these
conditions, our findings suggest that countries may be further
bounded by the size, strength, and proximity of their inter-sector
networks for clean energy innovation.

On a global scale, developing countries especially tend to have
relatively weak industrial networks, which further inhibits their
success in the transition to clean energy. For example, as shown in
Appendix C, less-developed countries have smaller inter-sector
networks that consist of less competitive industries compared
with developed countries. Furthermore, inter-sector networks for
clean energy sectors cannot be easily constructed and are rarely
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influenced by energy policy intervention. Therefore, when
designing global climate change initiatives, policymakers may need
to take into account the constraints of countries with underdevel-
oped inter-sector networks and provide them with more policy
support.

5.3. Implications for clean energy innovation policy designs

Current clean energy policy studies based on the technology-
push and demand-pull policy framework focus on testing what
types of demand-side or supply-side energy policy instruments
effectively stimulate clean energy technology innovation (Nemet,
2009; Johnstone et al., 2010; Lindman and Soderholm, 2016). The
importance of inter-sector networks has not gained enough
attention in policymaking. Our paper indicates that in addition to
technology-push and demand-pull policies for clean energy tech-
nologies, policymakers should think beyond a specific clean energy
sector, and strategically develop industrial policies that foster in-
teractions between emerging clean energy sectors and existing
related industries. These inter-sector industrial policies can be
government R&D programs that support cross-sector R&D, tech-
nological training programs that incentivize talent mobility from
existing industrial sectors to clean energy sectors, or other indus-
trial policies that could enhance interactions across clean energy
sectors. Currently, limited attention has been paid to empirically
investigate the designs of these industrial policies and their im-
pacts on clean energy innovation. More research needs to be con-
ducted to explore what types of industrial policies serve to enhance
interactions between clean energy sectors and related
manufacturing sectors, as well as how these policies can be
designed to work effectively.

5.4. Implications for theory, limitations and future research

Our findings contribute to both clean energy innovation
research and the product space theory. First, our study extends the
existing clean energy innovation system literature by identifying
and testing the impacts of different features of a country’s existing
industry structure on clean energy innovation, which has received
little attention in previous studies. Second, our study suggests that
high relatedness between a country’s existing industries and the
new clean energy sector may have a “lock-in” effect, which could
hinder the rise of the new energy sector. While this finding seems
to contradict the main argument of the product space theory, it
suggests a new factor to consider, which is the disruptiveness of the
new sector. In the wind power case, the incumbent related in-
dustries may have stronger inertia to expand to the wind industry
as wind power technologies have some disruptive features, which
require radical changes from existing technological competencies.
Given the current technological competencies in a country’s
existing industries, it may be easier for an upgrade to a new in-
dustrial sector that requires only incremental change rather than
disruptive technological change. Whether the validity of product
space theory depends on the radicalness of the new sector can be
tested in future research.

This study has several limitations worthy of addressing in future
research. The first caveat is that our empirical results demonstrate
correlations rather than causal relationships between inter-sector
network features and wind power sector innovation. Given the
data limitation, there are omitted variables that we cannot control,
such as innovative financial tools available in each country and
other policies, which can affect both the development of the wind
industry and its related sectors. While our methodology provides a

comprehensive way to identify the related manufacturing sectors
for a specific clean energy sector, the inter-sector relatedness is
calculated based on trade data for physical products, which ex-
cludes service sectors that may also influence clean energy inno-
vation. Furthermore, this paper only examines the impacts of the
inter-sector network on the wind power sector innovation in 61
countries. Future research is necessary to determine whether our
key findings are applicable to other clean energy sectors or other
countries. Another caveat limiting this study is the static, rather
than dynamic, nature of the empirical approach used to measure
the inter-sector network. As innovation in the clean energy sector
advances, the related inter-sector network may change. Future
research should seek measures that can better capture the dynamic
interactions between the clean energy sector and its related
industries.
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Appendix A. Calculation of relatedness and the selection of
related industrial sectors for the Wind Power Sector

A.1Calculation of relatedness

Following the research of Hausmann and Klinger (2006) and
Hidalgo et al. (2007), the relatedness between the wind power
sector and another sector is measured as the probability that a
country can export wind turbines and the major product of another
sector at the same time. More specifically, the relatedness between
sector r and the wind power sector (w) is calculated as the condi-
tional probability that a country exports products from sector r
given that it exports products from the wind power sector w. We
use the following equations to construct the relatedness between
sector r and the wind power sector (w) in a given year:

Relatedness; , ¢ = fj; ¢ = min{P(X; ¢ Xw.), P(Xw.t|Xi) } (A1)
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As shown in equation (A.2), xi,i,t represents whether country i
exports rinyear t. x;; = 1 if country i exports products from sector r
in year t; otherwise, it equals 0. The numerator captures the
number of countries exporting r in year t globally. N represents the
total number of countries in the world. Thus, X;; is the probability
that a country would export products from sector r in year t.
Similarly, in equation (A.3), Xw is the probability that a country
would export products from the wind power sector (w) in year t.

Relatedness;j, is the minimum of the pairwise conditional
probability of a country exporting products from sector r given that
it export products from sector w. If Relatedness,, = 1, it means that
any country that exports products from sector r also exports wind
turbines, thus suggesting sector r and the wind power sector are
fully related. If Relatedness,w,: = 0.75, it indicates that there is a 75%
chance that a country which exports product r will also export
wind turbines. Thus, the two sectors are highly related. When
Relatedness;,: = 0, it suggests that the two sectors are not related
to each other.

A.2Data collection and processing

We use trade data from the United Nations Commodity Trade
Database (UN Comtrade Database) to calculate the inter-sector
relatedness and identify sectors related to the wind power sector.
The UN Comtrade Database discloses the trade information among
200 countries/regions. It covers almost 99% of the world trade on
more than 6,000 product categories for the past 50 years, which
provides very comprehensive international trade data for our analysis

Figure A1 demonstrates the process of identifying
manufacturing sectors related to the wind power sector and con-
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sectors, such as agriculture and fishery. Through this process, we first
identify 2,023 related manufacturing sectors at the 6-digit (HS-6)
level from the 1996 Harmonized Commodity Description and Coding
Systems (HS 1996). Products in these related sectors are traded among
174 countries according to the UN Comtrade Database.

The second step is an objective selection based on the related-
ness calculation method in Section A.1. We use global trade data
from 2008 to 2012 to calculate the inter-sector relatedness between
the wind power sector (HS 6-digit code: 850231) and each of the
2,023 related sectors previously identified. Based on the calculated
relatedness, we exclude sectors which have minimum relatedness
with the wind power sector below 0.02. There are two reasons to
use 0.02 as a cutoff point. First, 0.02 is quite low, which suggests
minimal relatedness. The other reason is the products with relat-
edness below 0.02 seems to be less significant for the wind power
sectors based on our knowledge of the characteristics of the wind
turbine manufacturing. As a result, we further narrow the related
sectors to 1,991 manufacturing sectors.

We use global trade data from 2008 to 2012 to calculate inter-
sector relatedness for two reasons. Firstly, the trade data has not
been sufficiently updated for many of our sample countries after 2012.
Thus, the latest comprehensive trade data we can obtain for all the
countries in the sample is the 2012 data. Secondly, we exclude data
before 2008 in our analysis because the wind power sector, particu-
larly wind turbine manufacturing, was under rapid development
before 2008, which may not provide a reliable and comprehensive list
of manufacturing sectors related to wind power. We then use the 5-
year (i.e. 2008-2012) average inter-sector relatedness to refine the
list of wind power related industrial sectors. The reason to calculate
the 5-year average inter-sector relatedness is to mitigate the year-to-
year variance and the impacts of cyclical changes.

The third step is to choose related sectors for each country to
construct the national inter-sector network. We compare the list of
the wind related sectors and the list of products that a country can

structing the inter-sector network variables. We use two processes Coefficient (b—B) Sqrt(diag(V-b-V_B)
to identify the related sectors to the wind power sector. Differences  S.E.
The first step is a subjective selection based on expert opinions. We (b) fixed (B) random
had two researchers separately go through the list of the 1996 N_size;, 0.002 0.003 00009  0.0002
Harmonized Commodity Description and Coding Systems (HS 1996). N_strength; 0.061 —0.320 —0.263 0.616
The two researchers read through the description of the sectors at the N_proximity; 8245 8.508 -0.263 0.616
6-digit (HS-6) level and then excluded those obviously unrelated Policy_regulation; 0262 0254 0.009 0.007
GDP_per_capital;;  0.0002 0.0002 —2.7e-9 7.9e-7
Chi2(5) 33.30 Prob.>chi2  0.000
. Identifying more Calculatin C e
The product list of yims g Determining inter-
than 2000 relatedness and
UN Comtreade ) sector network for
products for 174 selecting 1991 . .
Database . different countries
countries products

Step 1: Identifying
related sectors based on
expert opinion

Step 2: Refining related
sectors based on inter-sector
relatedness calculation

Step 3: Selecting related
sectors
for the wind sector in
different countries.

Fig. A.1. Process for building the wind power inter-sector network.
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export. The overlaps between the list of export products of a
country and the list of the wind related sectors comprise the inter-
sector network for the specific country.

Variables Low-income Middle-income  High-income
countries countries countries
Number of countries 17 12 32
Average N_size;, 1239 1495 1640
value N_strength;; 0.18 0.20 0.25
N_proximity;, 0.30 0.30 0.32

Appendix B. Results of the Hausman test

Appendix C. Inter-network characteristics by income level
(average value in 2012)

Appendix D. Robustness check by using different estimation
methods

To test if our results are robust, we use different methods to
estimate our empirical models. Specifically, we use the Poisson
regression to run the knowledge generation model, which is
another appropriate method for models that use count variables as

Table D-1
Results on knowledge generation based on Poisson regression

Dependent variable: Npatent;, (fixed effects model)

Modell Model 2 Model 3

N_size;, 0.01%** 0.005%** 0.002*+** (0.0002)
(0.0002) (0.0002)

N_strength; 0.14 0.20 —0.47** (0.21)
(0.19) (0.19)

N_proximity;, 75.93%** 78.28%** 4.99*** (0.91)
(0.60) (0.61)

Policy_support;; 0.44%* 0.11%*** (0.005)

(0.004)

Cpatent;tq 0.00003*** (1.8e-6)

GDP_per_capita;, —0.00002** (9.5e-7)

Year fixed effect NO NO YES

Observations 848 848 848

Log likelihood —25764 —18992 -9263

Wald Chi 21829 32626 42296

Prob>chi 0.000 0.000 0.000

Notes: ***P < 0.01, **P < 0.05, *P < 0.1.

dependent variables. As shown in Table D-1, the results reconfirm
the major conclusions on the positive impacts of size and proximity
of the inter-sector network on wind patent applications. The only
difference is that the Poisson regression identifies a negative rela-
tionship between network strength and patent application once we
add year dummies, whereas our original model finds a non-

Table D-2
Results on market deployment based on GLS regression

Dependent variable: Ncapacity;

Model 1 Model 2 Model 3
N_size;; 0.81*** (0.29) 0.68** (0.29) 0.16 (0.26)
N_strength;; 4926%** (885) 4267*** (905) 2085%* (826)
N_proximity;, —13218+*** (6024) —10830*** (3632) —5642* (6450)
Policy_support;, 142.59*** (45) 98** (41)
Cpatent;;; 0.40*** (0.03)
GDP_per_capita; —0.02*** (0.006)
Year fixed effects YES YES YES

YES YES YES

Table D-2 (continued )

Dependent variable: Ncapacity;,

Model 1 Model 2 Model 3
Country fixed
effects

Constant 3256%** 2530% 1383
Observations 976 976 976
R-square 0.38 0.39 0.52
Wald Chi 559 575 986
Prob>chi 0.000 0.000 0.000

Notes: ***P < 0.01, **P < 0.05, *P < 0.1.

significant relationship between these two variables.

We use generalized least squares (GLS) to estimate the market
deployment models. The results of GLS regressions (Table D-2) are
similar to the results of our market deployment model in Table 7,
indicating the robustness of the main results.
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