# RSAConference2015

San Francisco | April 20-24 | Moscone Center

SESSION ID:

# The Wolves of Vuln Street: The 1st System Dynamics Model of the Oday Market

# CHANGE

Challenge today's security thinking

#### **Katie Moussouris**

Chief Policy Officer HackerOne @K8em0 <— that's a zero

#### **Michael Siegel**

Principal Research Scientist Massachusetts Institute of Technology @MITsloan

### Collaborators

Oday market system dynamics research funded by Facebook

### **Research Team**

Dr. Michael Siegel, Principal Research Scientist, Sloan School, Massachusetts Institute of Technology James Houghton, Sloan School, Massachusetts Institute of Technology Dr. Ryan Ellis, Harvard Kennedy School Collin Greene, Security Engineer, Facebook Katie Moussouris, Chief Policy Officer, HackerOne





# Why Model the Oday Market?



lackerone |



# Myths and Markets – Money Isn't Everything





RSAConference2015

# WANTED: Dead or Alive – Over \$500,000 PAID

### Microsoft's Strategic Bounty Programs:



### \$100,000 for new techniques



#### **\$50,000** for new defenses



lackerone

### **\$11,000** for IE11 beta bugs

Security TechCenter + Security Disealwa + Microsoft Security Response Denter

#### Microsoft Security Response Center

The Microsoft Security Response Center (MSRC) works with partnins and security researchers around the world to help prevent security incidents and to advance Microsoft product security.



New Mitigation Bypass Techniques \$100,000 Bounty Evolution

•

#### Update Lifecycle



A construction of the second s



 $\begin{array}{c} \left| \mathbf{u} - \mathbf{u} \right| = \left| \mathbf{u} - \mathbf{u} \right| \\ \left| \mathbf{u} \right| = \left| \mathbf{u} - \mathbf{u} \right| \\ \left| \mathbf{u} \right| = \left| \mathbf{u} - \mathbf{u} \right| \\ \left| \mathbf{u} \right| = \left| \mathbf{u} \right| \\ \left| \mathbf{u} \right| \\ \left| \mathbf{u} \right| = \left| \mathbf{u} \right| \\ \left| \mathbf{u} \right| \\ \left| \mathbf{u} \right| = \left| \mathbf{u} \right| \\ \left| \mathbf{u} \right| \\ \left| \mathbf{u} \right| = \left| \mathbf{u} \right| \\ \left| \mathbf{u} \right| \\ \left| \mathbf{u} \right| = \left| \mathbf{u} \right| \\ \left| \mathbf{u}$ 





M is find by region of all others in regions of a second second



## Mitigation Bypass Bounty: \$100,000 for a Technique

lackerone

### James and the Giant Check



**RSA**Conference2015

# IE Preview (AKA Beta) Bug Bounty: All in the TIMING

James and the Giant Check

Marketplace Gap: When Defense is the only game in town

Actual Results: 18 serious security holes

lackerone |



#### IE10 vs IE11 beta disclosure trends

RSA Conference2015

# **Vulnerabilities and Security**

### Vulnerabilities

# Security



RSAConference2015

# **Vulnerabilities: All Different but Still Fruit**



# **Creating a Vulnerability Typology**

| Vulnerability<br>Characteristics<br>Patching<br>Dynamics<br>Market<br>Dynamics | Quantity of Vulnerabilities             |                  | Scarce - Numerous                  |
|--------------------------------------------------------------------------------|-----------------------------------------|------------------|------------------------------------|
|                                                                                | Ease of Vulnerability Discovery         | $\triangleright$ | Easy - Difficult to Find           |
|                                                                                | Likelihood of Vulnerability Rediscovery |                  | Low - High                         |
|                                                                                | Technical Difficulty of Remediation     |                  | Easy - Hard to Fix                 |
|                                                                                | Logistical Difficulty of Remediation    |                  | Easy - Hard to Access              |
|                                                                                | Average Life of a Vulnerability         |                  | Short - Long                       |
|                                                                                | Third Party Market for Vulnerability    |                  | Offensive, Defensive, Mixed, Etc.  |
|                                                                                | Market Size                             |                  | Small - Large                      |
|                                                                                | Bug Bounty Program 🌶                    | $\triangleright$ | Yes, No                            |
| Human<br>Dynamics                                                              | Attackers                               |                  | Criminals, States, Patriots, Etc.  |
|                                                                                | Researcher Pool >                       |                  | Small - Large                      |
|                                                                                | Attacker Motivation >                   |                  | Political, Financial, Reputational |

## lackerone |

<sup>£</sup>RSA(

# **System Dynamics Modeling**

#### I. Models Complex Human Systems

- Process Improvement
- Market Crises

lackerone |

- Government Stability
- Software Development

II. Simulates Dynamic, Nonlinear Behavior

#RSAC



III. Formalizes Connection, Causality & Feedback IV. Gives Structure to Data





What policy levers do we have for reducing vulnerability?

# Which has the most leverage?





















17

RSAConference2015









### lackerone |

RSAConference2015

19

## **No Correlation**



lackerone |

### **Some Correlation**



### lackerone |

#RSAC

21

## **The Oday Market System Dynamics Model**



# **"Bug Collisions" Between Offense & Defense**

- Discovery from offensive stockpile is very sensitive to the correlation. A powerful lever!
- Defensive capacity development or offensive capacity minimization have different levels of importance depending on the value of the correlation.





## How does discovery correlation arise and behave?

The Code Base

Fixed code base

Vulnerabilities

Ť



Ŵ

Heterogeneous vulnerabilities

24

Common techniques between research groups



RSA Conference2015

# For a young piece of software



Group 1

Group 2







Likelihood of Random Discovery



lackerone |

With our model parameters, 9% overlap

#### #RSAC

### For a hardened piece of software





lackerone |



0.005

With our model parameters, 0.8% overlap **RSA**Conference2015

# Rate of "Bug Collisions" Varies with Target

Correlation can arise naturally due to varied discovery difficulty

 As software becomes more hardened, expect to see less correlation between discovery groups





## **Defenders Scale Best With Tools & Techniques**





# **Money Changes Everything**

Be careful not to create perverse incentives

 Unintended consequences of draining resources if defense bounties are too high



# **Key Takeaways For Organizations**

 Creating incentives for tools and techniques for vulnerability discovery is a more efficient way for defenders to drain the offensive stockpile

 Bug bounties are still effective to help find vulnerabilities, especially in less mature software

The vulnerability market is not controlled by price alone.





#### #RSAC

# **Key Takeaways for Governments**

- Many governments are in the role of both attacker and defender
- Governments need to broaden the focus of policy debates, it is not just about whether or not to stockpile individual vulnerabilities for offense
- Governments reap defense gains when they make vulnerability discovery tools and techniques available to defenders.



# **Applying this Research in the Real World**

- Use Incentive programs!
- Bounty tools and techniques (e.g., fuzzers & tools that help determine exploitability). The most effective way to drain the offensive stock pile.
- Bug bounties are an effective way to help find vulnerabilities, especially in young software.

### What Are We Doing?

lackerone

- The Internet Bug Bounty is offering bounties for tools and techniques this year.
- We are looking to involve more organizations in our research with MIT

RSA Conference2015

#### #RSAC

# It Has Not Escaped Our Notice...

The Wolves of Vuln Street are among us

 We are studying the dynamics of the pack to make the shepherds of the Internet Defense more effective

 More models are needed to identify and mobilize other levers besides price in the 0day market





## **Evolve the Model: All Hands on Deck**

"YOU NEVER CHANGE THINGS BY FIGHTING THE EXISTING REALITY. TO CHANGE SOMETHING, BUILD A NEW MODEL THAT MAKES THE EXISTING MODEL OBSOLETE."

- BUCKMINSTER FULLER

lackerone |

RSAConference2015